Skip to main content
Log in

Non-reversible metastable diffusions with Gibbs invariant measure I: Eyring–Kramers formula

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

In this article, we prove the Eyring–Kramers formula for non-reversible metastable diffusion processes that have a Gibbs invariant measure. Our result indicates that non-reversible processes exhibit faster metastable transitions between neighborhoods of local minima, compared to the reversible process considered in Bovier et al. (J Eur Math Soc 6:399–424, 2004). Therefore, by adding non-reversibility to the model, we can indeed accelerate the metastable transition. Our proof is based on the potential theoretic approach to metastability through accurate estimation of the capacity between metastable valleys. We carry out this estimation by developing a novel method to compute the sharp asymptotics of the capacity without relying on variational principles such as the Dirichlet principle or the Thomson principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. All the critical points of U are non-degenerate (i.e., the Hessian at each critical point is invertible) and isolated from others.

  2. The case \(\Sigma _{0}=\emptyset \) may occur, for instance, if we take \(H=H_{0}\) in Fig. 2. We can deal with this situation using our result by modifying H; see Remark 3.6(4).

  3. Indeed, our result with \(\varvec{\ell }=\varvec{0}\) strictly contains what has been established in [5]. See Remark 3.6-(3).

  4. Since \(\partial _{+}{\mathcal {B}}_{\epsilon }^{\varvec{\sigma }}\subset {\mathcal {K}}\) where \({\mathcal {K}}\) is defined in (8.6) we can bound \(\varvec{\ell }\) by the \(L^{\infty }({\mathcal {K}})\) norm of \(\varvec{\ell }.\) This argument will be used repeatedly in the remainder of the article without further mention.

References

  1. Beltrán, J., Landim, C.: Tunneling and metastability of continuous time Markov chains. J. Stat. Phys. 140, 1065–1114 (2010)

    Article  MathSciNet  Google Scholar 

  2. Beltrán, J., Landim, C.: Tunneling and metastability of continuous time Markov chains II. J. Stat. Phys. 149, 598–618 (2012)

    Article  MathSciNet  Google Scholar 

  3. Beltrán, J., Landim, C.: Metastability of reversible condensed zero range processes on a finite set. Probab. Theory Related Fields. 152, 781–807 (2012)

    Article  MathSciNet  Google Scholar 

  4. Bouchet, F., Reygner, J.: Generalisation of the Eyring–Kramers transition rate formula to irreversible diffusion processes. Ann. Henri Poincaré (B) Probability and Statistics. 17, 3499–3532 (2016)

  5. Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability in reversible diffusion process I. Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. 6, 399–424 (2004)

    Article  MathSciNet  Google Scholar 

  6. Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability and low lying spectra in reversible Markov chains. Commun. Math. Phys. 228, 219–255 (2002)

    Article  MathSciNet  Google Scholar 

  7. Duncan, A.B., Leliévre, T., Pavliotis, G.A.: Variance reduction using nonreversible Langevin samplers. J. Stat. Phys. 163, 457–491 (2016)

    Article  MathSciNet  Google Scholar 

  8. Eyring, H.: The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935)

    Article  Google Scholar 

  9. Freidlin, M.I., Wentzell, A.D.: On small random perturbation of dynamical systems. Usp. Math. Nauk 25 (1970) [English transl., Russ. Math. Surv. 25 (1970)]

  10. Friedman, A.: Stochastic differential equations and applications. Academic Press, Cambridge (1975)

    MATH  Google Scholar 

  11. Gao, X., Gürbüzbalaban, M., Zhu, L.: Breaking reversibility accelerates Langevin dynamics for global non-convex optimization. arXiv:1812.07725. (2019)

  12. Gaudillere, A., Landim, C.: A Dirichlet principle for non reversible Markov chains and some recurrence theorems. Probab. Theory Related Fields. 158, 55–89 (2014)

    Article  MathSciNet  Google Scholar 

  13. Di Gesú, G., Leliévre, T., Le Peutrec, D., Nectoux, B.: Jump Markov models and transition state theory: the quasi-stationary distribution approach. Faraday Discussions 196, 469–495 (2016)

    Article  Google Scholar 

  14. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Grundlehren der mathematischen Wissenschaften, 224. Springer, Berlin, (2015)

  15. Gürbüzbalaban, M., Sagun, L., Simsekli, U.: A Tail-Index Analysis of Stochastic Gradient Noise in Deep Neural Networks. Proceedings of the 36th International Conference on Machine Learning, 97, 5827-5837 (2019)

  16. Hwang, C.-R., Hwang-Ma, S.-Y., Sheu, S.-J.: Accelerating Gaussian diffusions. Ann. Appl. Probab. 3, 897–913 (1993)

    Article  MathSciNet  Google Scholar 

  17. Hwang, C.-R., Hwang-Ma, S.-Y., Sheu, S.-J.: Accelerating diffusions. Ann. Appl. Probab. 15, 1433–1444 (2005)

    Article  MathSciNet  Google Scholar 

  18. Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica. 7, 284–304 (1940)

    Article  MathSciNet  Google Scholar 

  19. Landim, C., Mariani, M., Seo, I.: A Dirichlet and a Thomson principle for non-selfadjoint elliptic operators with application to non-reversible, etastable diffusion processes. Arch. Rational Mech. Anal. 231, 887–938 (2017)

    Article  Google Scholar 

  20. Landim, C., Misturini, R., Tsunoda, K.: Metastability of reversible random walks in potential fields. J. Stat. Phys. 160, 1449–1482 (2015)

    Article  MathSciNet  Google Scholar 

  21. Landim, C., Seo, I.: Metastability of non-reversible random walks in a potential field, the Eyring-Kramers transition rate formula. Commun. Pure Appl. Math. 71, 203–266 (2018)

    Article  Google Scholar 

  22. Landim, C., Seo, I.: Metastability of non-reversible, mean-field Potts model with three spins. J. Stat. Phys. 165, 693–726 (2016)

    Article  MathSciNet  Google Scholar 

  23. Michel, L.: About small eigenvalues of the Witten Laplacian. Pure Appl. Anal. 1, 149–206 (2019)

    Article  MathSciNet  Google Scholar 

  24. Landim, C., Seo, I.: Metastability of one-dimensional, non-reversible diffusions with periodic boundary conditions. Ann. Henri Poincaré (B) Probability and Statistics. 55, 1850–1889 (2019)

  25. Lee, J.M.: Introduction to smooth manifolds. Graduate Texts in Mathematics, 218. Springer-Verlag, New York, (2012)

  26. Lee, J., Seo, I.: Non-reversible metastable diffusions with Gibbs invariant measure II: Markov chain convergence. arXiv:2008.08295. (2020)

  27. Lelievre, T., Nier, F., Pavliotis, G.A.: Optimal non-reversible linear drift for the convergence to equilibrium of a diffusion. J. Stat. Phys. 152, 237–274 (2013)

    Article  MathSciNet  Google Scholar 

  28. Le Peutrec, D., Michel, L.: Sharp spectral asymptotics for nonreversible metastable diffusion processes. Probability and Mathematical Physics. 1, 3–53 (2019)

    Article  Google Scholar 

  29. Milnor, J.: Morse theory. Annals of Mathematics Studies, 51. Princeton University Press, New Jersey, (1969)

  30. Oh, C., Rezakhanlou, F.: Metastability of zero range processes via Poisson equations. Unpublished manuscript. (2019)

  31. Pinsky, R.G.: Positive harmonic functions and diffusion. Cambridge Studies in Advanced Mathematics, 45. Cambridge University Press, Cambridge, (1995)

  32. Rey-Bellet, L., Spiliopoulos, K.: Irreversible Langevin samplers and variance reduction: a large deviations approach. Nonlinearity. 28, (2015)

  33. Rey-Bellet, L., Spiliopoulos, K.: Improving the convergence of reversible samplers. J. Stat. Phys. 164, 472–494 (2016)

    Article  MathSciNet  Google Scholar 

  34. Rezakhanlou, F., Seo, I.: Scaling limit of small random perturbation of dynamical systems. arXiv:1812.02069. (2018)

  35. Seo, I.: Condensation of non-reversible zero-range processes. Commun. Math. Phys. 366, 781–839 (2019)

    Article  MathSciNet  Google Scholar 

  36. Varadhan, S.R.S.: Lectures on diffusion problems and partial differential equations. Tata Institute of Fundamental Research, Bombay (1980)

Download references

Acknowledgements

IS was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (Nos. 2016K2A9A2A13003815, 2017R1A5A1015626 and 2018R1C1B6006896). JL was supported by the NRF grant funded by the Korea government (Nos. 2017R1A5A1015626 and 2018R1C1B6006896).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Insuk Seo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Seo, I. Non-reversible metastable diffusions with Gibbs invariant measure I: Eyring–Kramers formula. Probab. Theory Relat. Fields 182, 849–903 (2022). https://doi.org/10.1007/s00440-021-01102-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-021-01102-z

Mathematics Subject Classification

Navigation