Skip to main content
Log in

Quenched invariance principle for a class of random conductance models with long-range jumps

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We study random walks on \({\mathbb {Z}}^d\) (with \(d\ge 2\)) among stationary ergodic random conductances \(\{C_{x,y}:x,y\in {\mathbb {Z}}^d\}\) that permit jumps of arbitrary length. Our focus is on the quenched invariance principle (QIP) which we establish by a combination of corrector methods, functional inequalities and heat-kernel technology assuming that the p-th moment of \(\sum _{x\in {\mathbb {Z}}^d}C_{0,x}|x|^2\) and q-th moment of \(1/C_{0,x}\) for x neighboring the origin are finite for some \(p,q\ge 1\) with \(p^{-1}+q^{-1}<2/d\). In particular, a QIP thus holds for random walks on long-range percolation graphs with connectivity exponents larger than 2d in all \(d\ge 2\), provided all the nearest-neighbor edges are present. Although still limited by moment conditions, our method of proof is novel in that it avoids proving everywhere-sublinearity of the corrector. This is relevant because we show that, for long-range percolation with exponents between \(d+2\) and 2d, the corrector exists but fails to be sublinear everywhere. Similar examples are constructed also for nearest-neighbor, ergodic conductances in \(d\ge 3\) under the conditions complementary to those of the recent work of Bella and Schäffner (Ann Probab 48(1):296–316, 2020). These examples elucidate the limitations of elliptic-regularity techniques that underlie much of the recent progress on these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M., Newman, C.: Discontinuity of the percolation density in one-dimensional \(1/|x-y|^2\) percolation models. Commun. Math. Phys. 107, 611–647 (1986)

    MathSciNet  MATH  Google Scholar 

  2. Aldous, D.: Stopping times and tightness. Ann. Probab. 6(2), 335–340 (1978)

    MathSciNet  MATH  Google Scholar 

  3. Andres, S., Barlow, M.T., Deuschel, J.-D., Hambly, B.M.: Invariance principle for the random conductance model. Probab. Theory Rel. Fields 156(3–4), 535–580 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andres, S., Chiarini, A., Slowik, M.: Quenched local limit theorem for random walks among time-dependent ergodic degenerate weights. Probab. Theory Rel. Fields (to appear)

  5. Andres, S., Deuschel, J.-D., Slowik, M.: Invariance principle for the random conductance model in a degenerate ergodic environment. Ann. Probab. 43(4), 1866–1891 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andres, S., Deuschel, J.-D., Slowik, M.: Harnack inequalities on weighted graphs and some applications to the random conductance model. Probab. Theory Rel. Fields 164(3–4), 931–977 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Andres, S., Deuschel, J.-D., Slowik, M.: Heat kernel estimates and intrinsic metric for random walks with general speed measure under degenerate conductances. Electron. Commun. Probab. 24 (2019), paper no. 5

  8. Andres, S., Taylor, P.A.: Local limit theorems for the random conductance model and applications to the Ginzburg–Landau \(\nabla \phi \) interface model. J. Stat. Phys. 182 (2021), paper no. 35

  9. Ba, M., Mathieu, P.: A Sobolev inequality and the individual invariance principle for diffusions in a periodic potential. SIAM J. Math. Anal. 47(3), 2022–2043 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barlow, M.T.: Random walks on supercritical percolation clusters. Ann. Probab. 32(4), 3024–3084 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Barlow, M.T., Burzdy, K., Timár, A.: Comparison of quenched and annealed invariance principles for random conductance model. Probab. Theory Rel. Fields 164, 741–770 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Barlow, M.T., Deuschel, J.-D.: Invariance principle for the random conductance model with unbounded conductances. Ann. Probab. 38(1), 234–276 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Barlow, M.T., Grigor’yan, A., Kumagai, T.: Heat kernel upper bounds for jump processes and the first exit time. J. Reine Angew. Math. 626, 135–157 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Bella, P., Schäffner, M.: Quenched invariance principle for random walks among random degenerate conductances. Ann. Probab. 48(1), 296–316 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bella, P., Schäffner, M.: Local boundedness and Harnack inequality for solutions of linear nonuniformly elliptic equations. Commun. Pure Appl. Math. 74(3), 453–477 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bella, P., Schäffner, M.: Non-uniformly parabolic equations and applications to the random conductance model. arXiv:2009.11535

  17. Berger, N., Biskup, M.: Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Rel. Fields 137(1–2), 83–120 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Berger, N., Biskup, M., Hoffman, C.E., Kozma, G.: Anomalous heat-kernel decay for random walk among bounded random conductances. Ann. Inst. Henri Poincaré 274(2), 374–392 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

    MATH  Google Scholar 

  20. Biskup, M.: On the scaling of the chemical distance in long range percolation models. Ann. Probab. 32(4), 2938–2977 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Biskup, M.: Graph diameter in long-range percolation. Rand. Struct. Algorithm 39(2), 210–227 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Biskup, M.: Recent progress on the random conductance model. Prob. Surv. 8, 294–373 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Biskup, M., Boukhadra, O.: Subdiffusive heat-kernel decay in four-dimensional i.i.d. random conductance models. J. Lond. Math. Soc. 86(2), 455–481 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Biskup, M., Lin, J.: Sharp asymptotic for the chemical distance in long-range percolation. Rand. Struct. Algorithm 55, 560–583 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Biskup, M., Kumagai, T.: Quenched invariance principle for a class of random conductance models with long-range jumps. arXiv:1412.0175

  26. Biskup, M., Prescott, T.M.: Functional CLT for random walk among bounded conductances. Electron. J. Probab. 12, 1323–1348 (2007). paper no. 49

    Article  MathSciNet  MATH  Google Scholar 

  27. Carlen, E.A., Kusuoka, S., Stroock, D.W.: Upper bounds for symmetric Markov transition functions. Ann. Inst. Henri Poincaré Probab. Statist. 23, 245–287 (1987)

    MathSciNet  MATH  Google Scholar 

  28. Chen, X., Kumagai, T., Wang, J.: Random conductance models with stable-like jumps: quenched invariance principle. Ann. Appl. Probab. (to appear)

  29. Chen, X., Kumagai, T., Wang, J.: Random conductance models with stable-like jumps: Heat kernel estimates and Harnack inequalities. J. Funct. Anal. 279, paper no. 108656 (2020)

  30. Crawford, N., Sly, A.: Simple random walk on long range percolation clusters I: heat kernel bounds. Probab. Theory Rel. Fields 154, 753–786 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Crawford, N., Sly, A.: Simple random walk on long range percolation clusters II: scaling limits. Ann. Probab. 41(2), 445–502 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Davies, E.B.: Explicit constants for Gaussian upper bounds on heat kernels. Am. J. Math. 109(2), 319–333 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. De Masi, A., Ferrari, P.A., Goldstein, S., Wick, W.D.: Invariance principle for reversible Markov processes with application to diffusion in the percolation regime. In: Particle Systems, Random Media and Large Deviations (Brunswick, Maine), Contemporary Mathematics, vol. 41, pp. 71–85. American Mathematical Society, Providence, RI (1985)

  34. De Masi, A., Ferrari, P.A., Goldstein, S., Wick, W.D.: An invariance principle for reversible Markov processes. Applications to random motions in random environments. J. Stat. Phys. 55(3–4), 787–855 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  35. Deuschel, J.-D., Fukushima, R.: Quenched tail estimate for the random walk in random scenery and in random layered conductance II. Electron. J. Probab. 25, paper no. 75 (2020)

  36. Ding, J., Sly, A.: Distances in critical long range percolation. arXiv:1303.3995

  37. Flegel, F., Heida, M., Slowik, M.: Homogenization theory for the random conductance model with degenerate ergodic weights and unbounded-range jumps. Ann. Inst. Henri. Poincaré Probab. Stat. 55, 1226–1257 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Imbrie, J., Newman, C.: An intermediate phase with slow decay of correlations in one-dimensional \(1/\vert x-y\vert ^2\) percolation, Ising and Potts models. Commun. Math. Phys. 118(2), 303–336 (1988)

    MathSciNet  Google Scholar 

  39. Kipnis, C., Varadhan, S.R.S.: A central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Commun. Math. Phys. 104(1), 1–19 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kumagai, T.: Random Walks on Disordered Media and Their Scaling Limits. Lecture Notes in Mathematics/Ecole d’Ete de Probabilites de Saint-Flour, vol. 2101. Springer, Berlin (2014)

    MATH  Google Scholar 

  41. Kumagai, T., Misumi, J.: Heat kernel estimates for strongly recurrent random walk on random media. J. Theor. Probab. 21, 910–935 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Latala, R.: Estimation of moments of sums of independent real random variables. Ann. Probab. 25, 1502–1513 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  43. Liggett, T.M.: Continuous Time Markov Processes. An Introduction. Graduate Studies in Mathematics, vol. 113. American Mathematical Society, Providence, RI (2010)

    Google Scholar 

  44. Mathieu, P.: Quenched invariance principles for random walks with random conductances. J. Stat. Phys. 130(5), 1025–1046 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mathieu, P., Piatnitski, A.L.: Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463, 2287–2307 (2007)

    MathSciNet  MATH  Google Scholar 

  46. Mathieu, P., Remy, E.: Isoperimetry and heat kernel decay on percolation clusters. Ann. Probab. 32(1A), 100–128 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Meyer, P.-A.: Renaissance, recollements, mélanges, ralentissement de processus de Markov. Ann. Inst. Fourier 25, 464–497 (1975)

    Article  MATH  Google Scholar 

  48. Procaccia, E.B., Rosenthal, R., Sapozhnikov, A.: Quenched invariance principle for simple random walk on clusters in correlated percolation models. Probab. Theory Rel. Fields 166, 619–657 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sidoravicius, V., Sznitman, A.-S.: Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Rel. Fields 129(2), 219–244 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang, L., Zhang, Z.: Scaling limits for one-dimensional long-range percolation: using the corrector method. Stat. Probab. Lett. 83(11), 2459–2466 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank anonymous referees for their helpful comments and corrections. This research has been supported by National Science Foundation (US) Awards DMS-1712632 and DMS-1954343, the National Natural Science Foundation of China (No. 11871338), JSPS KAKENHI Grant Number JP17H01093, the Alexander von Humboldt Foundation, the National Natural Science Foundation of China (Nos. 11831014 and 12071076), the Program for Probability and Statistics: Theory and Application (No. IRTL1704) and the Program for Innovative Research Team in Science and Technology in Fujian Province University (IRTSTFJ). The non-Kyoto based authors would like to thank RIMS at Kyoto University for hospitality that made this project possible. A version of this paper by two of the present authors was previously posted on arXiv [25] and was subsequently withdrawn due to an error in one of the key arguments. The present paper subsumes the parts of [25] that are worth saving.

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Biskup.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2021 M. Biskup, X. Chen, T. Kumagai and J. Wang. Reproduction, by any means, of the entire article for non-commercial purposes is permitted without charge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biskup, M., Chen, X., Kumagai, T. et al. Quenched invariance principle for a class of random conductance models with long-range jumps. Probab. Theory Relat. Fields 180, 847–889 (2021). https://doi.org/10.1007/s00440-021-01059-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-021-01059-z

Mathematics Subject Classification

Navigation