Abstract
Let \((X,\Vert \cdot \Vert _X)\) be a Banach space. The purpose of this article is to systematically investigate dimension independent properties of vector valued functions \(f:\{-1,1\}^n\rightarrow X\) on the Hamming cube whose spectrum is bounded above or below. Our proofs exploit contractivity properties of the heat flow, induced by the geometry of the target space \((X,\Vert \cdot \Vert _X)\), combined with duality arguments and suitable tools from approximation theory and complex analysis. We obtain a series of improvements of various well-studied estimates for functions with bounded spectrum, including moment comparison results for low degree Walsh polynomials and Bernstein–Markov type inequalities, which constitute discrete vector valued analogues of Freud’s inequality in Gauss space (1971). Many of these inequalities are new even for scalar valued functions. Furthermore, we provide a short proof of Mendel and Naor’s heat smoothing theorem (2014) for functions in tail spaces with values in spaces of nontrivial type and we also prove a dual lower bound on the decay of the heat semigroup acting on functions with spectrum bounded from above. Finally, we improve the reverse Bernstein–Markov inequalities of Meyer (in: Seminar on probability, XVIII, Lecture notes in mathematics. Springer, Berlin, 1984. https://doi.org/10.1007/BFb0100043) and Mendel and Naor (Publ Math Inst Hautes Études Sci 119:1–95, 2014. https://doi.org/10.1007/s10240-013-0053-2) for functions with narrow enough spectrum and improve the bounds of Filmus et al. (Isr J Math 214(1):167–192, 2016. https://doi.org/10.1007/s11856-016-1355-0) on the \(\ell _p\) sums of influences of bounded functions for \(p\in \big (1,\frac{4}{3}\big )\).
This is a preview of subscription content, access via your institution.
References
Aaronson, S., Ambainis, A.: The need for structure in quantum speedups. Theory Comput. 10, 133–166 (2014). https://doi.org/10.4086/toc.2014.v010a006
Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators. Grundlehren der Mathematischen Wissenschaften. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-00227-9
Bačkurs, A., Bavarian, M.: On the sum of \(L_1\) influences. In: IEEE 29th Conference on Computational Complexity—CCC 2014, pp. 132–143. IEEE Computer Society, Los Alamitos, CA (2014). https://doi.org/10.1109/CCC.2014.21
Beckner, W.: Inequalities in Fourier analysis. Ann. Math. (2) 102(1), 159–182 (1975). https://doi.org/10.2307/1970980
Ben Efraim, L., Lust-Piquard, F.: Poincaré type inequalities on the discrete cube and in the CAR algebra. Probab. Theory Relat. Fields 141(3–4), 569–602 (2008). https://doi.org/10.1007/s00440-007-0094-x
Bonami, A.: Étude des coefficients de Fourier des fonctions de \(L^{p}(G)\). Ann. Inst. Fourier (Grenoble) 20(fasc. 2), 335–402 (1970)
Borell, C.: On the integrability of Banach space valued Walsh polynomials. In: Séminaire de Probabilités, XIII, Lecture Notes in Math., vol. 721, pp. 1–3. Springer, Berlin (1979)
Borell, C.: On polynomial chaos and integrability. Probab. Math. Stat. 3(2), 191–203 (1984)
Borwein, P., Erdélyi, T.: Polynomials and Polynomial Inequalities. Texts in Mathematics, vol. 161. Springer, New York (1995). https://doi.org/10.1007/978-1-4612-0793-1
Bourgain, J.: Walsh subspaces of \(L^{p}\)-product spaces. In: Seminar on Functional Analysis, 1979–1980 (French), pp. Exp. No. 4A, 9. École Polytech., Palaiseau (1980)
Epperson, J.B.: The hypercontractive approach to exactly bounding an operator with complex Gaussian kernel. J. Funct. Anal. 87(1), 1–30 (1989). https://doi.org/10.1016/0022-1236(89)90002-5
Erdélyi, T.: Reverse Markov- and Bernstein-type inequalities for incomplete polynomials. J. Approx. Theory 251, 105341 (2020). https://doi.org/10.1016/j.jat.2019.105341
Eskenazis, A., Ivanisvili, P.: Dimension independent Bernstein–Markov inequalities in Gauss space (2018). To appear in J. Approx. Theory. Preprint available at arXiv:1808.01273
Eskenazis, A., Naor, A.: Discrete Littlewood–Paley–Stein theory and Pisier’s inequality for superreflexive targets (2020) (Preprint)
Filmus, Y., Hatami, H., Heilman, S., Mossel, E., O’Donnell, R., Sachdeva, S., Wan, A., Wimmer, K.: Real Analysis in Computer Science: a collection of open problems (2014). Preprint available at https://simons.berkeley.edu/sites/default/files/openprobsmerged.pdf
Filmus, Y., Hatami, H., Keller, N., Lifshitz, N.: On the sum of the \(L_1\) influences of bounded functions. Isr. J. Math. 214(1), 167–192 (2016). https://doi.org/10.1007/s11856-016-1355-0
Freud, G.: A certain inequality of Markov type. Dokl. Akad. Nauk SSSR 197, 790–793 (1971)
Heilman, S., Mossel, E., Oleszkiewicz, K.: Strong contraction and influences in tail spaces. Trans. Am. Math. Soc. 369(7), 4843–4863 (2017). https://doi.org/10.1090/tran/6916
Hytönen, T., Naor, A.: Pisier’s inequality revisited. Stud. Math. 215(3), 221–235 (2013). https://doi.org/10.4064/sm215-3-2
Ivanisvili, P., Nazarov, F.: On Weissler’s conjecture on the Hamming cube I (2019). Preprint available at arXiv:1907.11359
Ivanisvili, P., Tkocz, T.: Comparison of moments of Rademacher chaoses. Ark. Mat. 57(1), 121–128 (2019). https://doi.org/10.4310/ARKIV.2019.v57.n1.a7
Janson, S.: On complex hypercontractivity. J. Funct. Anal. 151(1), 270–280 (1997). https://doi.org/10.1006/jfan.1997.3144
Kahane, J.P.: Sur les sommes vectorielles \(\sum \pm u_{n}\). C. R. Acad. Sci. Paris 259, 2577–2580 (1964)
Khintchine, A.: Über dyadische Brüche. Math. Z. 18(1), 109–116 (1923). https://doi.org/10.1007/BF01192399
Krantz, S.G.: Geometric Function Theory. Cornerstones. Birkhäuser Boston, Inc., Boston, MA (2006). Explorations in complex analysis
Kwapień, S.: A theorem on the Rademacher series with vector valued coefficients. In: Probability in Banach spaces, pp. 157–158. Lecture Notes in Math., Vol. 526. Springer, Berlin (1976)
Kwapień, S., Woyczyński, W.A.: Random Series and Stochastic Integrals: Single and Multiple. Probability and Its Applications. Birkhäuser Boston Inc, Boston, MA (1992). https://doi.org/10.1007/978-1-4612-0425-1
Lust-Piquard, F.: Riesz transforms associated with the number operator on the Walsh system and the fermions. J. Funct. Anal. 155(1), 263–285 (1998). https://doi.org/10.1006/jfan.1997.3217
Maurey, B.: Type, cotype and \(K\)-convexity. In: Handbook of the geometry of Banach spaces, Vol. 2, pp. 1299–1332. North-Holland, Amsterdam (2003). https://doi.org/10.1016/S1874-5849(03)80037-2
Maurey, B., Pisier, G.: Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach. Stud. Math. 58(1), 45–90 (1976). https://doi.org/10.4064/sm-58-1-45-90
Mendel, M., Naor, A.: Nonlinear spectral calculus and super-expanders. Publ. Math. Inst. Hautes Études Sci. 119, 1–95 (2014). https://doi.org/10.1007/s10240-013-0053-2
Meyer, P.A.: Transformations de Riesz pour les lois gaussiennes. In: Seminar on probability, XVIII, Lecture Notes in Math., vol. 1059, pp. 179–193. Springer, Berlin (1984). https://doi.org/10.1007/BFb0100043
Milman, V.D., Schechtman, G.: Asymptotic Theory of Finite-Dimensional Normed Spaces. Lecture Notes in Mathematics, vol. 1200. Springer, Berlin (1986)
Naor, A.: An introduction to the Ribe program. Jpn. J. Math. 7(2), 167–233 (2012). https://doi.org/10.1007/s11537-012-1222-7
Naor, A., Schechtman, G.: Remarks on non linear type and Pisier’s inequality. J. Reine Angew. Math. 552, 213–236 (2002). https://doi.org/10.1515/crll.2002.092
O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, New York (2014). https://doi.org/10.1017/CBO9781139814782
Oleszkiewicz, K.: On a nonsymmetric version of the Khinchine-Kahane inequality. In: Stochastic Inequalities and Applications, Progr. Probab., vol. 56, pp. 157–168. Birkhäuser, Basel (2003)
Pisier, G.: Sur les espaces de Banach qui ne contiennent pas uniformément de \(l^{1}_{n}\). C. R. Acad. Sci. Paris Sér. A-B 277, A991–A994 (1973)
Pisier, G.: Les inégalités de Khintchine-Kahane, d’après C. Borell. In: Séminaire sur la Géométrie des Espaces de Banach (1977–1978), pp. Exp. No. 7, 14. École Polytech., Palaiseau (1978)
Pisier, G.: Holomorphic semigroups and the geometry of Banach spaces. Ann. Math. (2) 115(2), 375–392 (1982). https://doi.org/10.2307/1971396
Pisier, G.: Probabilistic methods in the geometry of Banach spaces. In: Probability and Analysis (Varenna, 1985), Lecture Notes in Math., vol. 1206, pp. 167–241. Springer, Berlin (1986). https://doi.org/10.1007/BFb0076302
Pisier, G.: Riesz transforms: a simpler analytic proof of P.-A. Meyer’s inequality. In: Séminaire de Probabilités, XXII, Lecture Notes in Math., vol. 1321, pp. 485–501. Springer, Berlin (1988). https://doi.org/10.1007/BFb0084154
Pisier, G.: A remark on hypercontractive semigroups and operator ideals (2007). Preprint available at arXiv:0708.3423
Sarantopoulos, Y.: Bounds on the derivatives of polynomials on Banach spaces. Math. Proc. Camb. Philos. Soc. 110(2), 307–312 (1991). https://doi.org/10.1017/S0305004100070389
Stein, E.M.: Topics in Harmonic Analysis Related to the Littlewood–Paley Theory. Annals of Mathematics Studies, No. 63. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo (1970)
Szegö, G.: Über einen Satz von A. Markoff. Math. Z. 23(1), 45–61 (1925). https://doi.org/10.1007/BF01506220
Talagrand, M.: Isoperimetry, logarithmic Sobolev inequalities on the discrete cube, and Margulis’ graph connectivity theorem. Geom. Funct. Anal. 3(3), 295–314 (1993). https://doi.org/10.1007/BF01895691
Wagner, R.: Notes on an inequality by Pisier for functions on the discrete cube. In: Geometric Aspects of Functional analysis. Lecture Notes in Math., vol. 1745, pp. 263–268. Springer, Berlin (2000). https://doi.org/10.1007/BFb0107220
Weissler, F.B.: Two-point inequalities, the Hermite semigroup, and the Gauss–Weierstrass semigroup. J. Funct. Anal. 32(1), 102–121 (1979). https://doi.org/10.1016/0022-1236(79)90080-6
Wolff, P.: Hypercontractivity of simple random variables. Stud. Math. 180(3), 219–236 (2007). https://doi.org/10.4064/sm180-3-3
Acknowledgements
We are indebted to Assaf Naor for many helpful discussions. We are also very grateful to Tamás Erdélyi for proving the main result of [12] upon our request and to an anonymous referee for sharing with us an argument which improved Corollary 21. Finally, we would like to thank Françoise Lust-Piquard for valuable feedback.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
P. I. was partially supported by NSF DMS-1856486 and NSF CAREER-1945102. This work was carried out under the auspices of the Simons Algorithms and Geometry (A&G) Think Tank.
Rights and permissions
About this article
Cite this article
Eskenazis, A., Ivanisvili, P. Polynomial inequalities on the Hamming cube. Probab. Theory Relat. Fields 178, 235–287 (2020). https://doi.org/10.1007/s00440-020-00973-y
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00440-020-00973-y