Skip to main content
Log in

On delocalization of eigenvectors of random non-Hermitian matrices

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We study delocalization of null vectors and eigenvectors of random matrices with i.i.d entries. Let A be an \(n\times n\) random matrix with i.i.d real subgaussian entries of zero mean and unit variance. We show that with probability at least \(1-e^{-\log ^{2} n}\)

$$\begin{aligned} \min \limits _{I\subset [n],\,|I|= m}\Vert \mathbf{{v}}_I\Vert \ge \frac{m^{3/2}}{n^{3/2}\log ^Cn}\Vert \mathbf{{v}}\Vert \end{aligned}$$

for any real eigenvector \(\mathbf{{v}}\) and any \(m\in [\log ^C n,n]\), where \(\mathbf{{v}}_I\) denotes the restriction of \(\mathbf{{v}}\) to I. Further, when the entries of A are complex, with i.i.d real and imaginary parts, we show that with probability at least \(1-e^{-\log ^{2} n}\)all eigenvectors of A are delocalized in the sense that

$$\begin{aligned} \min \limits _{I\subset [n],\,|I|= m}\Vert \mathbf{{v}}_I\Vert \ge \frac{m}{n\log ^Cn}\Vert \mathbf{{v}}\Vert \end{aligned}$$

for all \(m\in [\log ^C{n},n]\). Comparing with related results, in the range \(m\in [\log ^{C'}{n},n/\log ^{C'}{n}]\) in the i.i.d setting and with weaker probability estimates, our lower bounds on \(\Vert \mathbf{{v}}_I\Vert \) strengthen an earlier estimate \(\min \nolimits _{|I|= m}\Vert \mathbf{{v}}_I\Vert \ge c(m/n)^6\Vert \mathbf{{v}}\Vert \) obtained in Rudelson and Vershynin (Geom Funct Anal 26(6):1716–1776, 2016), and bounds \(\min \nolimits _{|I|= m}\Vert \mathbf{{v}}_I\Vert \ge c(m/n)^2\Vert \mathbf{{v}}\Vert \) (in the real setting) and \(\min \nolimits _{|I|= m}\Vert \mathbf{{v}}_I\Vert \ge c(m/n)^{3/2}\Vert \mathbf{{v}}\Vert \) (in the complex setting) established in Luh and O’Rourke (Eigenvector delocalization for non-Hermitian random matrices and applications. arXiv:1810.00489). As the case of real and complex Gaussian matrices shows, our bounds are optimal up to the polylogarithmic multiples. We derive stronger estimates without the polylogarithmic error multiples for null vectors of real \((n-1)\times n\) random matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, Z., Silverstein, J.W.: Spectral Analysis of Large Dimensional Random Matrices. Springer Series in Statistics, 2nd edn. Springer, New York (2010)

    MATH  Google Scholar 

  2. Basak, A., Cook, N., Zeitouni, O.: Circular law for the sum of random permutation matrices. Electron. J. Probab. 23, Paper No. 33, 51 pp (2018)

  3. Bloemendal, A., Erdös, L., Knowles, A., Yau, H.-T., Yin, J.: Isotropic local laws for sample covariance and generalized Wigner matrices. Electron. J. Probab. 19(33), 53 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Bloemendal, A., Knowles, A., Yau, H.T., Yin, J.: On the principal components of sample covariance matrices. Probab. Theory Relat. Fields 164(1–2), 459–552 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Bourgade, P.: Random band matrices. In: Proceedings of the International Congress of Mathematicians (ICM 2018), pp. 2759–2783 (2019)

  6. Bourgade, P., Huang, J., Yau, H.-T.: Eigenvector statistics of sparse random matrices. Electron. J. Probab. 22, Paper No. 64, 38 pp (2017)

  7. Bourgade, P., Yau, H.-T.: The eigenvector moment flow and local quantum unique ergodicity. Commun. Math. Phys. 350(1), 231–278 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Bourgade, P., Yau, H.-T., Yin, J.: Random band matrices in the delocalized phase, I: quantum unique ergodicity and universality (2018). arXiv:1807.01559

  9. Cacciapuoti, C., Maltsev, A., Schlein, B.: Local Marchenko-Pastur law at the hard edge of sample covariance matrices. J. Math. Phys. 54(4), 043302 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Chafaï, D.: Singular Values of Random Matrices. Lecture Notes (2009). http://djalil.chafai.net/docs/sing.pdf (2009)

  11. Chung, F., Young, S.J.: Braess’s paradox in large sparse random graphs. In: 6th Workshop on Internet and Network Economics, volume 6484 of Lecture Notes in Computer Science, pp. 194–208 (2010)

  12. Cook, N.: The circular law for random regular digraphs. Ann. Inst. H. Poincaré Probab. Statist. 55(4), 2111–2167 (2019)

    MathSciNet  MATH  Google Scholar 

  13. David, H.A.: Order Statistics, 2nd edn. Wiley, New York (1981)

    Google Scholar 

  14. Edelman, A., Kostlan, E., Shub, M.: How many eigenvalues of a random matrix are real? J. Am. Math. Soc. 7(1), 247–267 (1994)

    MathSciNet  MATH  Google Scholar 

  15. Eldan, R., Racz, M.Z., Schramm, T.: Braess’s paradox for the spectral gap in random graphs and delocalization of eigenvectors. Random Struct. Algorithms 50(4), 584–611 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Erdős, P.: On a lemma of Littlewood and Offord. Bull. Am. Math. Soc. 51, 898–902 (1945)

    MathSciNet  MATH  Google Scholar 

  17. Erdős, L., Knowles, A., Yau, H.-T., Yin, J.: Delocalization and diffusion profile for random band matrices. Commun. Math. Phys. 323(1), 367–416 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Erdős, L., Schlein, B., Yau, H.-T.: Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Probab. 37(3), 815–852 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Esseen, C.G.: On the Kolmogorov–Rogozin inequality for the concentration function. Z. Wahrsch. Verw. Gebiete 5, 210–216 (1966)

    MathSciNet  MATH  Google Scholar 

  20. Gordon, Y., Litvak, A.E., Pajor, A., Tomczak-Jaegermann, N.: Random \(\epsilon \)-nets and embeddings in \(l^N_\infty \). Studia Math. 178(1), 91–98 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Hanson, D.L., Wright, F.T.: A bound on tail probabilities for quadratic forms in independent random variables. Ann. Math. Stat. 42, 1079–1083 (1971)

    MathSciNet  MATH  Google Scholar 

  22. Kesten, H.: A sharper form of the Doeblin–Lévy–Kolmogorov–Rogozin inequality for concentration functions. Math. Scand. 25, 133–144 (1969)

    MathSciNet  MATH  Google Scholar 

  23. Klartag, B., Livshyts, G.V.: The lower bound for Koldobsky’s slicing inequality via random rounding (2018). arXiv:1810.06189

  24. Knowles, A., Yin, J.: Eigenvector distribution of Wigner matrices. Probab. Theory Relat. Fields 155(3–4), 543–582 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Kolmogorov, A.: Sur les propriétés des fonctions de concentrations de M. P. Lévy. Ann. Inst. H. Poincaré 16, 27–34 (1958)

    MathSciNet  MATH  Google Scholar 

  26. Koltchinskii, V., Mendelson, S.: Bounding the smallest singular value of a random matrix without concentration. Int. Math. Res. Not. IMRN 23, 12991–13008 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Littlewood, J.E., Offord, A.C.: On the number of real roots of a random algebraic equation. III. Rec. Math. [Mat. Sbornik] N.S. 12(54), 277–286 (1943)

    MathSciNet  MATH  Google Scholar 

  28. Litvak, A., Lytova, A., Tomczak-Jaegermann, N., Tikhomirov, K., Youssef, P.: Structure of eigenvectors of random regular digraphs. arXiv:1801.05575

  29. Litvak, A., Lytova, A., Tomczak-Jaegermann, N., Tikhomirov, K., Youssef, P.: Circular law for sparse random regular digraphs. arXiv:1801.05576

  30. Litvak, A.E., Pajor, A., Rudelson, M., Tomczak-Jaegermann, N.: Smallest singular value of random matrices and geometry of random polytopes. Adv. Math. 195(2), 491–523 (2005)

    MathSciNet  MATH  Google Scholar 

  31. Livshyts, G., Paouris, G., Pivovarov, P.: On sharp bounds for marginal densities of product measures. Isr. J. Math. 216(2), 877–889 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Luh, K., O’Rourke, S.: Eigenvector delocalization for non-Hermitian random matrices and applications. arXiv:1810.00489

  33. Nguyen, H., Vu, V.: Normal vector of a random hyperplane. Int. Math. Res. Not. 2018(6), 1754–1778 (2018)

    MathSciNet  MATH  Google Scholar 

  34. O’Rourke, S., Vu, V., Wang, K.: Eigenvectors of random matrices: a survey. J. Combin. Theory Ser. A 144, 361–442 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Pillai, N.S., Yin, J.: Universality of covariance matrices. Ann. Appl. Probab. 24(3), 935–1001 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Rogers, C.A.: A note on coverings. Mathematika 4, 1–6 (1957)

    MathSciNet  MATH  Google Scholar 

  37. Rogozin, B.A.: On the increase of dispersion of sums of independent random variables. Teor. Verojatnost. i Primenen 6, 106–108 (1961)

    MathSciNet  Google Scholar 

  38. Rudelson, M.: Delocalization of eigenvectors of random matrices. Lecture notes (2017). arXiv:1707.08461

  39. Rudelson, M., Vershynin, R.: The least singular value of a random square matrix is \(O(n^{-1/2})\). C. R. Math. Acad. Sci. Paris 346(15–16), 893–896 (2008)

    MathSciNet  MATH  Google Scholar 

  40. Rudelson, M., Vershynin, R.: The Littlewood–Offord problem and invertibility of random matrices. Adv. Math. 218(2), 600–633 (2008)

    MathSciNet  MATH  Google Scholar 

  41. Rudelson, M., Vershynin, R.: Small ball probabilities for linear images of high-dimensional distributions. Int. Math. Res. Not. IMRN 19, 9594–9617 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Rudelson, M., Vershynin, R.: Smallest singular value of a random rectangular matrix. Commun. Pure Appl. Math. 62(12), 1707–1739 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Rudelson, M., Vershynin, R.: Non-asymptotic theory of random matrices: extreme singular values. In: Proceedings of the International Congress of Mathematicians, vol. III, pp. 1576–1602. Hindustan Book Agency, New Delhi (2010)

  44. Rudelson, M., Vershynin, R.: Hanson–Wright inequality and sub-Gaussian concentration. Electron. Commun. Probab. 18(82), 9 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Rudelson, M., Vershynin, R.: Delocalization of eigenvectors of random matrices with independent entries. Duke Math. J. 164(13), 2507–2538 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Rudelson, M., Vershynin, R.: No-gaps delocalization for general random matrices. Geom. Funct. Anal. 26(6), 1716–1776 (2016)

    MathSciNet  MATH  Google Scholar 

  47. Tao, T., Vu, V.: Random matrices: the distribution of the smallest singular values. Geom. Funct. Anal. 20(1), 260–297 (2010)

    MathSciNet  MATH  Google Scholar 

  48. Tao, T., Vu, V.: Random covariance matrices: universality of local statistics of eigenvalues. Ann. Probab. 40(3), 1285–1315 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Tao, T., Vu, V.: Random matrices: universality of local spectral statistics of non-Hermitian matrices. Ann. Probab. 43(2), 782–874 (2015)

    MathSciNet  MATH  Google Scholar 

  50. Tatarko, K.: An upper bound on the smallest singular value of a square random matrix. J. Complex. 48, 119–128 (2018)

    MathSciNet  MATH  Google Scholar 

  51. Tikhomirov, K.E.: The smallest singular value of random rectangular matrices with no moment assumptions on entries. Isr. J. Math. 212(1), 289–314 (2016)

    MathSciNet  MATH  Google Scholar 

  52. Tikhomirov, K.: Invertibility via distance for non-centered random matrices with continuous distributions (2017). arXiv:1707.09656

  53. Valiant, G., Roughgarden, T.: Braess’s paradox in large random graphs. Random Struct. Algorithms 37(4), 495–515 (2010)

    MathSciNet  MATH  Google Scholar 

  54. Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices. In: Eldar, Y.C., Kutyniok, G. (eds.) Compressed Sensing, pp. 210–268. Cambridge University Press, Cambridge (2012)

  55. Vershynin, R.: High-Dimensional Probability. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 47. Cambridge University Press, Cambridge (2018)

  56. Vu, V., Wang, K.: Random weighted projections, random quadratic forms and random eigenvectors. Random Struct. Algorithms 47(4), 792–821 (2015)

    MathSciNet  MATH  Google Scholar 

  57. Wang, K.: Random covariance matrices: universality of local statistics of eigenvalues up to the edge. Random Matrices Theory Appl. 1(1), 1150005 (2012)

    MathSciNet  MATH  Google Scholar 

  58. Wei, F.: Upper bound for intermediate singular values of random matrices. J. Math. Anal. Appl. 445(2), 1530–1547 (2017)

    MathSciNet  MATH  Google Scholar 

  59. Yaskov, P.: Sharp lower bounds on the least singular value of a random matrix without the fourth moment condition. Electron. Commun. Probab. 20(44), 9 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research is partially supported by the Simons foundation. A.L. was supported by Grant No. 2018/31/B/ST1/03937 National Science Centre, Poland. The authors would like to thank the Referees of the paper for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Tikhomirov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lytova, A., Tikhomirov, K. On delocalization of eigenvectors of random non-Hermitian matrices. Probab. Theory Relat. Fields 177, 465–524 (2020). https://doi.org/10.1007/s00440-019-00956-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-019-00956-8

Mathematics Subject Classification

Navigation