Skip to main content
Log in

A stationary planar random graph with singular stationary dual: dyadic lattice graphs

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

Dyadic lattice graphs and their duals are commonly used as discrete approximations to the hyperbolic plane. We use them to give examples of random rooted graphs that are stationary for simple random walk, but whose duals have only a singular stationary measure. This answers a question of Curien and shows behaviour different from the unimodular case. The consequence is that planar duality does not combine well with stationary random graphs. We also study harmonic measure on dyadic lattice graphs and show its singularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Aldous, D., Lyons, R.: Processes on unimodular random networks. Electron. J. Probab., 12(54), 1454–1508 (2007). Errata, Electron. J. Probab., 22(51), 4 pp, (2017) and Electron. J. Probab. 24(25), 1–2, (2019)

  2. Angel, O., Hutchcroft, T., Nachmias, A., Ray, G.: Hyperbolic and parabolic unimodular random maps. Geom. Funct. Anal. 28(4), 879–942 (2018)

    Article  MathSciNet  Google Scholar 

  3. Bañuelos, R.: On an estimate of Cranston and McConnell for elliptic diffusions in uniform domains. Probab. Theory Rel. Fields 76(3), 311–323 (1987)

    Article  MathSciNet  Google Scholar 

  4. Benjamini, I., Lyons, R., Peres, Y., Schramm, O.: Group-invariant percolation on graphs. Geom. Funct. Anal. 9(1), 29–66 (1999)

    Article  MathSciNet  Google Scholar 

  5. Benjamini, I., Curien, N.: Ergodic theory on stationary random graphs. Electron. J. Probab. 17(93), 20 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Billingsley, P.: Ergodic Theory and Information. Wiley, New York (1965)

    MATH  Google Scholar 

  7. Bramson, M., Kalikow, S.: Nonuniqueness in \(g\)-functions. Isr. J. Math. 84(1–2), 153–160 (1993)

    Article  MathSciNet  Google Scholar 

  8. Cannon, J.W., Floyd, W.J., Kenyon, R.W., Parry, W.R.: Hyperbolic geometry. In: Levy, S. (ed.) Flavors of Geometry. Mathematical Sciences Research Institute Publications, vol. 31, pp. 59–115. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  9. DeVos, M., Mohar, B.: An analogue of the Descartes–Euler formula for infinite graphs and Higuchi’s conjecture. Trans. Am. Math. Soc. 359(7), 3287–3300 (2007)

    Article  MathSciNet  Google Scholar 

  10. Imrich, W.: On Whitney’s theorem on the unique embeddability of \(3\)-connected planar graphs. In: Fiedler, M. (Ed.) Recent Advances in Graph Theory (Proceedings of the Second Czechoslovak Symposium, Prague, 1974), pp. 303–306. (Loose errata). Academia, Prague (1975)

  11. Keane, M.: Strongly mixing \(g\)-measures. Invent. Math. 16, 309–324 (1972)

    Article  MathSciNet  Google Scholar 

  12. Ledrappier, F.: Principe variationnel et systèmes dynamiques symboliques. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 30, 185–202 (1974)

    Article  MathSciNet  Google Scholar 

  13. Lindvall, W.: Lectures on the Coupling Method. Dover Publications, Inc., Mineola, NY. Corrected reprint of the 1992 original (2002)

  14. Lyons, R., Peres, Y.: Probability on Trees and Networks. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 42. Cambridge University Press, New York (2016)

  15. Pitman, J.: Probability. Springer, New York (1993)

    Book  Google Scholar 

  16. Stenflo, Ö.: Uniqueness in \(g\)-measures. Nonlinearity 16(2), 403–410 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the referees for their careful readings and questions, which led to improved clarity of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell Lyons.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of R.L. is partially supported by the National Science Foundation under Grant DMS-1612363.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyons, R., White, G. A stationary planar random graph with singular stationary dual: dyadic lattice graphs. Probab. Theory Relat. Fields 176, 1011–1043 (2020). https://doi.org/10.1007/s00440-019-00934-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-019-00934-0

Keywords

Mathematics Subject Classification

Navigation