Skip to main content
Log in

Scaling limits of the Schelling model

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

The Schelling model of segregation, introduced by Schelling in 1969 as a model for residential segregation in cities, describes how populations of multiple types self-organize to form homogeneous clusters of one type. In this model, vertices in an N-dimensional lattice are initially assigned types randomly. As time evolves, the type at a vertex v has a tendency to be replaced with the most common type within distance w of v. We present the first mathematical description of the dynamical scaling limit of this model as w tends to infinity and the lattice is correspondingly rescaled. We do this by deriving an integro-differential equation for the limiting Schelling dynamics and proving almost sure existence and uniqueness of the solutions when the initial conditions are described by white noise. The evolving fields are in some sense very “rough” but we are able to make rigorous sense of the evolution. In a key lemma, we show that for certain Gaussian fields h, the supremum of the occupation density of \(h-\phi \) at zero (taken over all 1-Lipschitz functions \(\phi \)) is almost surely finite, thereby extending a result of Bass and Burdzy. In the one dimensional case, we also describe the scaling limit of the limiting clusters obtained at time infinity, thereby resolving a conjecture of Brandt, Immorlica, Kamath, and Kleinberg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The original version of the conjecture in [12] is for the pair-swapping variant of the model, while we mainly consider the single-site-update variant in this paper. As we explain in Sects. 1.4 and 2, most of our arguments can be adapted to the pair-swapping setting.

References

  1. Adler, R.J.: The Geometry of Random Fields, vol. 62 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2010). Reprint of the 1981 original [MR0611857]

  2. Andjel, E.D., Liggett, T.M., Mountford, T.: Clustering in one-dimensional threshold voter models. Stoch. Process. Appl. 42(1), 73–90 (1992)

    Article  MathSciNet  Google Scholar 

  3. Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis, and Applications, vol. 75 of Applied Mathematical Sciences, 2nd edn. Springer, New York (1988)

    Book  Google Scholar 

  4. Alexander, K.S., Pyke, R.: A uniform central limit theorem for set-indexed partial-sum processes with finite variance. Ann. Probab. 14(2), 582–597 (1986)

    Article  MathSciNet  Google Scholar 

  5. Bass, R.F.: Probabilistic Techniques in Analysis. Probability and its Applications (New York). Springer, New York (1995)

    Google Scholar 

  6. Bass, R.F., Burdzy, K.: The supremum of Brownian local times on Hölder curves. Ann. Inst. H. Poincaré Probab. Stat. 37(6), 627–642 (2001)

    Article  Google Scholar 

  7. Bass, R.F., Burdzy, K.: Erratum to: “The supremum of Brownian local times on Hölder curves” [Ann. Inst. H. Poincaré Probab. Statist. 37, no. 6, 627–642 (2001); MR1863273 (2002j:60146)]. Ann. Inst. H. Poincaré Probab. Stat. 38(5), 799–800, (2002)

  8. Barmpalias, G., Elwes, R., Lewis-Pye, A.: Digital morphogenesis via Schelling segregation. In: 55th Annual IEEE Symposium on Foundations of Computer Science—FOCS 2014, pp. 156–165. IEEE Computer Society, Los Alamitos (2014)

  9. Barmpalias, G., Elwes, R., Lewis-Pye, A.: Minority population in the one-dimensional Schelling model of segregation. ArXiv e-prints (August 2015)

  10. Barmpalias, G., Elwes, R., Lewis-Pye, A.: Tipping points in 1-dimensional Schelling models with switching agents. J. Stat. Phys. 158(4), 806–852 (2015)

    Article  MathSciNet  Google Scholar 

  11. Barmpalias, G., Elwes, R., Lewis-Pye, A.: Unperturbed Schelling segregation in two or three dimensions. J. Stat. Phys. 164, 1460–1487 (2016)

    Article  MathSciNet  Google Scholar 

  12. Brandt, C., Immorlica, N., Kamath, G., Kleinberg, R.: An analysis of one-dimensional Schelling segregation. In: STOC’12—Proceedings of the 2012 ACM Symposium on Theory of Computing, pp. 789–803. ACM, New York (2012)

  13. Clark, W., Fossett, M.: Understanding the social context of the Schelling segregation model. Proc. Natl. Acad. Sci. 105(11), 4109–4114 (2008)

    Article  Google Scholar 

  14. Clark, W.A.V.: Residential preferences and neighborhood racial segregation: a test of the schelling segregation model. Demography 28(1), 1–19 (1991)

    Article  MathSciNet  Google Scholar 

  15. Dall’Asta, L., Castellano, C., Marsili, M.: Statistical physics of the Schelling model of segregation. J. Stat. Mech. 7, L07002 (2008)

    Google Scholar 

  16. Durrett, R., Steif, J.E.: Fixation results for threshold voter systems. Ann. Probab. 21(1), 232–247 (1993)

    Article  MathSciNet  Google Scholar 

  17. Freedman, D.A.: On tail probabilities for martingales. Ann. Probab. 3, 100–118 (1975)

    Article  MathSciNet  Google Scholar 

  18. Grauwin, S., Bertin, E., Lemoy, R., Jensen, P.: Competition between collective and individual dynamics. Proc. Natl. Acad. Sci. USA 106(49), 20622–20626 (2009)

    Article  Google Scholar 

  19. Gerhold, S., Glebsky, L., Schneider, C., Weiss, H., Zimmermann, B.: Computing the complexity for schelling segregation models. Commun. Nonlinear Sci. Numer. Simul. 13(10), 2236–2245 (2008)

    Article  MathSciNet  Google Scholar 

  20. Geman, D., Horowitz, J.: Occupation densities. Ann. Probab. 8(1), 1–67 (1980)

    Article  MathSciNet  Google Scholar 

  21. Ginosar, Y., Holzman, R.: The majority action on infinite graphs: strings and puppets. Discrete Mat. 215(1–3), 59–72 (2000)

    Article  MathSciNet  Google Scholar 

  22. Gauvin, L., Vannemenus, J., Nadal, J.-P.: Phase diagram of a schelling segregation model. Eur. Phys. J. B 70, 293–304 (2009)

    Article  Google Scholar 

  23. Immorlica, N., Kleinbergt, R., Lucier, B., Zadomighaddam, M.: Exponential segregation in a two-dimensional schelling model with tolerant individuals. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 984–993. SIAM (2017)

  24. Liggett, T.M.: Coexistence in threshold voter models. Ann. Probab. 22, 764–802 (1994)

    Article  MathSciNet  Google Scholar 

  25. Liggett, T.M.: Stochastic interacting systems: contact, voter and exclusion processes, vol. 324. Springer, New York (2013)

    MATH  Google Scholar 

  26. Laurie, J., Jaggi, K.: Role of ’vision’ in neighbourhood racial segregation: a variant of the schelling segregation model. Urban Stud. 40(13), 2687–2704 (2003)

    Article  Google Scholar 

  27. Moran, G.: On the period-two-property of the majority operator in infinite graphs. Trans. Am. Math. Soc. 347(5), 1649–1667 (1995)

    Article  MathSciNet  Google Scholar 

  28. Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding. ArXiv e-prints (May 2016)

  29. Mossel, E., Tamuz, O.: Opinion exchange dynamics. Probab. Surv. 14, 155–204 (2017)

    Article  MathSciNet  Google Scholar 

  30. The Royal Swedish Academy of Sciences. Advanced information on the Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel (2005)

  31. Odor, G.: Self-organising, two temperature ising model describing human segregation. Int. J. Modern Phys. C 3, 393–398 (2008)

    Article  Google Scholar 

  32. Omidvar, H., Franceschetti, M.: Self-organized Segregation on the Grid. J. Stat. Phys. 170, 748–783 (2018)

    Article  MathSciNet  Google Scholar 

  33. Pancs, R., Vriend, N.J.: Schelling’s spatial proximity model of segregation revisited. J. Public Econ. 91(1–2), 1–24 (2007)

    Article  Google Scholar 

  34. Pollicott, M., Weiss, H.: The dynamics of Schelling-type segregation models and a non-linear graph laplacian variational problem. Adv. Appl. Math. 27, 17–40 (2001)

    Article  MathSciNet  Google Scholar 

  35. Schelling, T.: Models of segregation. Am. Econ. Rev. 59, 488–493 (1969)

    Google Scholar 

  36. Schelling, T.: Dynamic models of segregation. J. Math. Sociol. 1, 143–186 (1971)

    Article  Google Scholar 

  37. Schelling, T.C.: Micromotives and Macrobehavior. Norton, New York (1978)

    Google Scholar 

  38. Stauffer, D., Solomon, S.: Ising, schelling and self-organising segregation. Eur. Phys. J. B 57, 473–479 (2007)

    Article  Google Scholar 

  39. Stroock, D.W.: Essentials of Integration Theory for Analysis, vol. 262 of Graduate Texts in Mathematics. Springer, New York (2011)

    Book  Google Scholar 

  40. Singh, A., Vainchtein, D., Weiss, H.: Schelling’s segregation model: parameters, scaling, and aggregation. Demogr. Res. 21, 341–365 (2009)

    Article  Google Scholar 

  41. Tamuz, O., Tessler, R.J.: Majority dynamics and the retention of information. Isr. J. Math. 206(1), 483–507 (2015)

    Article  MathSciNet  Google Scholar 

  42. Vinkovic, D., Kirman, A.: A physical analogue of the Schelling model. Proc. Natl. Acad. Sci. 103(51), 19251–19265 (2007)

    Google Scholar 

  43. Young, H.P.: Individual Strategy and Social Structure: An Evolutionary Theory of Institutions. Princeton University Press, Princeton (2001)

    Google Scholar 

  44. Zhang, J.: A dynamic model of residential segregation. J. Math. Sociol. 28(3), 147–170 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Omer Tamuz for introducing us to the Schelling model, for numerous helpful discussions, for comments on an earlier draft of this paper, and for allowing us to use his simulations in Fig. 5. We thank Chris Burdzy for our discussion about his paper [6], and we thank Matan Harel for our discussions about Proposition 3.11. We thank Nicole Immorlica, Robert Kleinberg, Brendan Lucier, and Rad Niazadeh for discussions about this paper and some of their related work [12, 23]. The first author was supported by a fellowship from the Norwegian Research Council. The second author was supported by NSF Grants DMS 1209044 and DMS 1712862.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Holden.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holden, N., Sheffield, S. Scaling limits of the Schelling model. Probab. Theory Relat. Fields 176, 219–292 (2020). https://doi.org/10.1007/s00440-019-00918-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-019-00918-0

Mathematics Subject Classification

Navigation