Advertisement

Coagulation-transport equations and the nested coalescents

  • Amaury LambertEmail author
  • Emmanuel Schertzer
Article
  • 38 Downloads

Abstract

The nested Kingman coalescent describes the dynamics of particles (called genes) contained in larger components (called species), where pairs of species coalesce at constant rate and pairs of genes coalesce at constant rate provided they lie within the same species. We prove that starting from rn species, the empirical distribution of species masses (numbers of genes/n) at time t / n converges as \(n\rightarrow \infty \) to a solution of the deterministic coagulation-transport equation
$$\begin{aligned} \partial _t d \ = \ \partial _x ( \psi d ) \ + \ a(t)\left( d\,\star \,d - d \right) , \end{aligned}$$
where \(\psi (x) = cx^2\), \(\star \) denotes convolution and \(a(t)= 1/(t+\delta )\) with \(\delta =2/r\). The most interesting case when \(\delta =0\) corresponds to an infinite initial number of species. This equation describes the evolution of the distribution of species of mass x, where pairs of species can coalesce and each species’ mass evolves like \(\dot{x} = -\psi (x)\). We provide two natural probabilistic solutions of the latter IPDE and address in detail the case when \(\delta =0\). The first solution is expressed in terms of a branching particle system where particles carry masses behaving as independent continuous-state branching processes. The second one is the law of the solution to the following McKean–Vlasov equation
$$\begin{aligned} dx_t \ = \ - \psi (x_t) \,dt \ + \ v_t\,\Delta J_t \end{aligned}$$
where J is an inhomogeneous Poisson process with rate \(1/(t+\delta )\) and \((v_t; t\ge 0)\) is a sequence of independent random variables such that \({{\mathcal {L}}}(v_t) = {{\mathcal {L}}}(x_t)\). We show that there is a unique solution to this equation and we construct this solution with the help of a marked Brownian coalescent point process. When \(\psi (x)=x^\gamma \), we show the existence of a self-similar solution for the PDE which relates when \(\gamma =2\) to the speed of coming down from infinity of the nested Kingman coalescent.

Keywords

Kingman coalescent Smoluchowski equation McKean–Vlasov equation Degenerate PDE PDE probabilistic solution Hydrodynamic limit Entrance boundary Empirical measure Coalescent point process Continuous-state branching process Phylogenetics 

Mathematics Subject Classification

Primary 60K35 Secondary 35Q91 35R09 60G09 60B10 60G55 60G57 60J25 60J75 60J80 62G30 92D15 

Notes

Acknowledgements

The authors thank Center for Interdisciplinary Research in Biology (CIRB, Collège de France) for funding. We would like to thank the referee for her/his thorough review. We highly appreciated her/his comments and suggestions.

References

  1. 1.
    Abulwafa, E., Abdou, M., Mahmoud, A.: The solution of nonlinear coagulation problem with mass loss. Chaos Solitons Fractals 29(2), 313–330 (2006)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Aldous, D.: Stopping times and tightness. Ann. Probab. 6(2), 335–340 (1978)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Aldous, D.J.: Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists. Bernoulli 5(1), 3–48 (1999)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Berestycki, J., Berestycki, N., Limic, V.: The \(\Lambda \)-coalescent speed of coming down from infinity. Ann. Probab. 38(1), 207–233 (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Berestycki, J., Berestycki, N., Schweinsberg, J.: Beta-coalescents and continuous stable random trees. Ann. Probab. 35, 1835–1887 (2007)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Berestycki, N.: Recent progress in coalescent theory. Ensaios Mat. 16(1), 1–193 (2009)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bertoin, J.: Random Fragmentation and Coagulation Processes, vol. 102. Cambridge University Press, Cambridge (2006)zbMATHGoogle Scholar
  8. 8.
    Bertoin, J., Le Gall, J.-F.: Stochastic flows associated to coalescent processes. Ill. J. Math. III Limit Theorems 50(1–4), 147–181 (2006)zbMATHGoogle Scholar
  9. 9.
    Blancas, A., Duchamps, J.-J., Lambert, A., Siri-Jégousse, A.: Trees within trees: simple nested coalescents. Electron. J. Probab. 23(94), 1–27 (2018)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Blancas, A., Rogers, T., Schweinsberg, J., Siri-Jégousse, A.: The nested Kingman coalescent: speed of coming down from infinity. Ann. Appl. Probab. 29(3), 1808–1836 (2019)MathSciNetGoogle Scholar
  11. 11.
    Caballero, M.E., Lambert, A., Uribe Bravo, G.: Proof (s) of the Lamperti representation of continuous-state branching processes. Probab. Surv. 6, 62–89 (2009)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Derrida, B., Retaux, M.: The depinning transition in presence of disorder: a toy model. J. Stat. Phys. 156(2), 268–290 (2014)zbMATHGoogle Scholar
  13. 13.
    Duquesne, T., Le Gall, J.-F.: Random trees, Lévy processes and spatial branching processes. Astérisque 281, vi + 147 (2002)zbMATHGoogle Scholar
  14. 14.
    Feller, W.: Two singular diffusion problems. Ann. Math. 54(1), 173–182 (1951)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Fournier, N., Méléard, S.: A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann. Appl. Probab. 14, 1880–1919 (2004)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Grey, D.: Asymptotic behaviour of continuous time, continuous state-space branching processes. J. Appl. Probab. 11(4), 669–677 (1974)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Hu, Y., Mallein, B., Pain, M.: An exactly solvable continuous-time Derrida–Retaux model (2018). arXiv preprint arXiv:1811.08749
  18. 18.
    Joffe, A., Métivier, M.: Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv. Appl. Probab. 18(1), 20–65 (1986)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Kingman, J.F.C.: The coalescent. Stoch. Process. Their Appl. 13(3), 235–248 (1982)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Lambert, A.: Population dynamics and random genealogies. Stoch. Models 24(Suppl. 1), 45–163 (2008)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Lambert, A., Schertzer, E.: Recovering the Brownian coalescent point process from the Kingman coalescent by conditional sampling. Bernoulli 25, 148–173 (2019)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Lamperti, J.: Continuous state branching processes. Bull. Am. Math. Soc. 73(3), 382–386 (1967)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Norris, J.R.: Smoluchowski’s coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent. Ann. Appl. Probab. 9(1), 78–109 (1999)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Popovic, L.: Asymptotic genealogy of a critical branching process. Ann. Appl. Probab. 14(4), 2120–2148 (2004)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Roelly-Coppoletta, S.: A criterion of convergence of measure-valued processes: application to measure branching processes. Stoch. Int. J. Probab. Stoch. Process. 17(1–2), 43–65 (1986)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Singh, P., Rodgers, G.: Coagulation processes with mass loss. J. Phys. A Math. Gen. 29(2), 437 (1996)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Sznitman, A.-S.: Topics in propagation of chaos. In: Ecole d’été de probabilités de Saint-Flour XIX—1989, pp. 165–251. Springer (1991)Google Scholar
  28. 28.
    Tran, V.C.: Large population limit and time behaviour of a stochastic particle model describing an age-structured population. ESAIM Probab. Stat. 12, 345–386 (2008)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Tran, V.C.: Une ballade en forêts aléatoires. Technical report (2014)Google Scholar
  30. 30.
    Wattis, J.A., McCartney, D.G., Gudmundsson, T.: Coagulation equations with mass loss. J. Eng. Math. 49(2), 113–131 (2004)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Wennberg, B.: An example of non-uniqueness for solutions to the homogeneous Boltzmann equation. J. Stat. Phys. 95(1–2), 469–477 (1999)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Probabilités, Statistique et ModélisationSorbonne Université, CNRS UMR 8001ParisFrance
  2. 2.Centre Interdisciplinaire de Recherche en BiologieCollège de France, CNRS UMR 7241ParisFrance

Personalised recommendations