Skip to main content
Log in

Rigidity of the three-dimensional hierarchical Coulomb gas

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

A random set of points in Euclidean space is called ‘rigid’ or ‘hyperuniform’ if the number of points falling inside any given region has significantly smaller fluctuations than the corresponding number for a set of i.i.d. random points. This phenomenon has received considerable attention in recent years, due to its appearance in random matrix theory, the theory of Coulomb gases and zeros of random analytic functions. However, most of the published results are in dimensions one and two. This paper gives the first proof of hyperuniformity in a Coulomb type system in dimension three, known as the hierarchical Coulomb gas. This is a simplified version of the actual 3D Coulomb gas. The interaction potential in this model, inspired by Dyson’s hierarchical model of the Ising ferromagnet, has a hierarchical structure and is locally an approximation of the Coulomb potential. Hyperuniformity is proved at both macroscopic and microscopic scales, with upper and lower bounds for the order of fluctuations that match up to logarithmic factors. The fluctuations have cube-root behavior, in agreement with a well-known prediction for the 3D Coulomb gas. For completeness, analogous results are also proved for the 2D hierarchical Coulomb gas and the 1D hierarchical log gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M., Martin, P.A.: Structure of Gibbs states of one-dimensional Coulomb systems. Commun. Math. Phys. 78(1), 99–116 (1980)

    MathSciNet  Google Scholar 

  2. Ameur, Y., Hedenmalm, H., Makarov, N.: Fluctuations of eigenvalues of random normal matrices. Duke Math. J. 159(1), 31–81 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Ameur, Y., Hedenmalm, H., Makarov, N.: Random normal matrices and Ward identities. Ann. Probab. 43(3), 1157–1201 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  5. Bardenet, R., Hardy, A.: Monte Carlo with Determinantal Point Processes. (2016) arXiv preprint arXiv:1605.00361

  6. Bauerschmidt, R., Bourgade, P., Nikula, M., Yau, H.-T.: Local Density for Two-Dimensional One-Component Plasma. (2015) arXiv preprint arXiv:1510.02074

  7. Bauerschmidt, R., Bourgade, P., Nikula, M., Yau, H.-T.: The Two-Dimensional Coulomb Plasma: Quasi-free Approximation and Central Limit Theorem. (2016) arXiv preprint arXiv:1609.08582

  8. Beck, J.: Irregularities of distribution. I. Acta Math. 159(1–2), 1–49 (1987)

    MathSciNet  MATH  Google Scholar 

  9. Bekerman, F., Leblé, T., Serfaty, S.: CLT for Fluctuations of \(\beta \)-Ensembles with General Potential (2013). arXiv preprint arXiv:1706.09663

  10. Bekerman, F., Lodhia, A.: Mesoscopic Central Limit Theorem for General \(\beta \)-Ensembles (2016). arXiv preprint arXiv:1605.05206

  11. Ben Arous, G., Zeitouni, O.: Large deviations from the circular law. ESAIM Probab. Stat. 2, 123–134 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Bendikov, A.D., Grigor’yan, A.A., Pittet, C., Woess, W.: Isotropic Markov Semigroups on Ultra-Metric Spaces. (Russian) Uspekhi Mat. Nauk, 69(4), 418, 3–102 (2014); translation in Russian Math. Surv., 69(4), 589–680

    MathSciNet  MATH  Google Scholar 

  13. Bendikov, A.A., Grigor’yan, A.A., Pittet, Ch.: On a class of Markov semigroups on discrete ultra-metric spaces. Potential Anal. 37(2), 125–169 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Benfatto, G., Renn, J.: Nontrivial fixed points and screening in the hierarchical two-dimensional Coulomb gas. J. Stat. Phys. 67(5), 957–980 (1992)

    MathSciNet  MATH  Google Scholar 

  15. Benfatto, G., Gallavotti, G., Nicolò, F.: The dipole phase in the two-dimensional hierarchical Coulomb gas: analyticity and correlations decay. Commun. Math. Phys. 106(2), 277–288 (1986)

    MathSciNet  MATH  Google Scholar 

  16. Berman, R.J.: Determinantal point processes and fermions on complex manifolds: large deviations and bosonization. Commun. Math. Phys. 327(1), 1–47 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Bolley, F., Chafaï, D., Fontbona, J.: Dynamics of a Planar Coulomb Gas (2017). arXiv preprint arXiv:1706.08776

  18. Borodin, A., Sinclair, C.D.: The Ginibre ensemble of real random matrices and its scaling limits. Commun. Math. Phys. 291(1), 177–224 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Borodin, A., Gorin, V., Guionnet, A.: Gaussian asymptotics of discrete \(\beta \)-ensembles. Publ. Math. Inst. Hautes Études Sci. 125, 1–78 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Borot, G., Guionnet, A.: Asymptotic Expansion of \(\beta \) Matrix Models in the Multi-Cut Regime (2013). arXiv preprint arXiv:1303.1045

  21. Borot, G., Guionnet, A.: Asymptotic expansion of \(\beta \) matrix models in the one-cut regime. Commun. Math. Phys. 317(2), 447–483 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Borot, G., Guionnet, A., Kozlowski, K.K.: Large-\(N\) asymptotic expansion for mean field models with Coulomb gas interaction. Int. Math. Res. Not. IMRN 2015(20), 10451–10524 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Bourgade, P., Erdős, L., Yau, H.-T.: Bulk universality of general \(\beta \)-ensembles with non-convex potential. J. Math. Phys. 53(9), 095221 (2012). 19 pp

    MathSciNet  MATH  Google Scholar 

  24. Bourgade, P., Erdős, L., Yau, H.-T.: Universality of general \(\beta \)-ensembles. Duke Math. J. 163(6), 1127–1190 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Bourgade, P., Erdős, L., Yau, H.-T.: Edge universality of beta ensembles. Commun. Math. Phys. 332(1), 261–353 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Bourgade, P., Yau, H.-T., Yin, J.: Local circular law for random matrices. Probab. Theory Relat. Fields 159(3–4), 545–595 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Bourgade, P., Yau, H.-T., Yin, J.: The local circular law II: the edge case. Probab. Theory Relat. Fields 159(3–4), 619–660 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Bourgade, P., Erdős, L., Yau, H.-T., Yin, J.: Fixed energy universality for generalized Wigner matrices. Commun. Pure Appl. Math. 69(10), 1815–1881 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Brascamp, H.J., Lieb, E.H.: Some Inequalities for Gaussian Measures and the Long-Range Order of the One-Dimensional Plasma. Functional Integration and its Applications, pp. 1–14. Clarendon Press, Oxford (1975)

    MATH  Google Scholar 

  30. Breuer, J., Duits, M.: Universality of mesoscopic fluctuations for orthogonal polynomial ensembles. Commun. Math. Phys. 342(2), 491–531 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Breuer, J., Duits, M.: Central limit theorems for biorthogonal ensembles and asymptotics of recurrence coefficients. J. Am. Math. Soc. 30(1), 27–66 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Castin, Y.: Basic Theory Tools for Degenerate Fermi Gases (2006). arXiv preprint arXiv:cond-mat/0612613

  33. Chafaï, D., Hardy, A., Maïda, M.: Concentration for Coulomb Gases and Coulomb Transport Inequalities (2016). arXiv preprint arXiv:1610.00980

  34. Chafaï, D., Gozlan, N., Zitt, P.-A.: First-order global asymptotics for confined particles with singular pair repulsion. Ann. Appl. Probab. 24(6), 2371–2413 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Costin, O., Lebowitz, J.: Gaussian fluctuation in random matrices. Phys. Rev. Lett. 75, 69–72 (1995)

    MathSciNet  Google Scholar 

  36. Deift, P.A.: Orthogonal polynomials and random matrices: a Riemann-Hilbert approach. American Mathematical Society, Providence (1999)

    MATH  Google Scholar 

  37. Dhar, A., Kundu, A., Majumdar, S.N., Sabhapandit, S., Schehr, G.: Exact extremal statistics in the classical 1D Coulomb gas. Phys. Rev. Lett. 119, 060601 (2017)

    Google Scholar 

  38. Diaconis, P., Evans, S.N.: Linear functionals of eigenvalues of random matrices. Trans. Am. Math. Soc. 353(7), 2615–2633 (2001)

    MathSciNet  MATH  Google Scholar 

  39. Dimock, J.: The Kosterlitz–Thouless phase in a hierarchical model. J. Phys. A 23(7), 1207–1215 (1990)

    MathSciNet  MATH  Google Scholar 

  40. Dyson, F.J.: The dynamics of a disordered linear chain. Phys. Rev. 92(6), 1331–1338 (1953)

    MathSciNet  MATH  Google Scholar 

  41. Dyson, F.J.: Existence of a phase-transition in a one-dimensional Ising ferromagnet. Commun. Math. Phys. 12(2), 91–107 (1969)

    MathSciNet  MATH  Google Scholar 

  42. Forrester, P.J.: Log-Gases and Random Matrices. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  43. Ghosh, S.: Determinantal processes and completeness of random exponentials: the critical case. Probab. Theory Relat. Fields 163(3–4), 643–665 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Ghosh, S.: Palm measures and rigidity phenomena in point processes. Electron. Commun. Probab. 21(85), 1–14 (2016)

    MathSciNet  MATH  Google Scholar 

  45. Ghosh, S., Lebowitz, J.: Number rigidity in superhomogeneous random point fields. J. Stat. Phys. 166(3–4), 1016–1027 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Ghosh, S., Lebowitz, J.L.: Fluctuations, large deviations and rigidity in hyperuniform systems: a brief survey. Indian J. Pure Appl. Math. 48(4), 609–631 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Ghosh, S., Peres, Y.: Rigidity and tolerance in point processes: Gaussian zeroes and Ginibre eigenvalues. Duke Math. J. 166(10), 1789–1858 (2017)

    MathSciNet  MATH  Google Scholar 

  48. Ghosh, S., Zeitouni, O.: Large deviations for zeros of random polynomials with i.i.d. exponential coefficients. Int. Math. Res. Not. IMRN 2016(5), 1308–1347 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Ginibre, J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6, 440–449 (1965)

    MathSciNet  MATH  Google Scholar 

  50. Girko, V.L.: The circular law. Teor. Veroyatnost. i Primenen. 29(4), 669–679 (1984)

    MathSciNet  MATH  Google Scholar 

  51. Guidi, L.F., Marchetti, D.H.U.: Renormalization group flow of the two-dimensional hierarchical Coulomb gas. Commun. Math. Phys. 219(3), 671–702 (2001)

    MathSciNet  MATH  Google Scholar 

  52. Hardy, A.: A note on large deviations for 2D Coulomb gas with weakly confining potential. Electron. Commun. Probab. 17(19), 12 (2012)

    MathSciNet  MATH  Google Scholar 

  53. Holroyd, A.E., Soo, T.: Insertion and deletion tolerance of point processes. Electron. J. Probab. 18(74), 24 (2013)

    MathSciNet  MATH  Google Scholar 

  54. Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  55. Jancovici, B., Lebowitz, J.L., Manificat, G.: Large charge fluctuations in classical Coulomb systems. J. Stat. Phys. 72(3), 773–787 (1993)

    MathSciNet  MATH  Google Scholar 

  56. Johansson, K., Lambert, G.: Gaussian and Non-Gaussian Fluctuations for Mesoscopic Linear Statistics in Determinantal Processes (2015). arXiv preprint arXiv:1504.06455

  57. Johansson, K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91(1), 151–204 (1998)

    MathSciNet  MATH  Google Scholar 

  58. Kappeler, T., Pinn, K., Wieczerkowski, C.: Renormalization group flow of a hierarchical Sine-Gordon model by partial differential equations. Commun. Math. Phys. 136(2), 357–368 (1991)

    MathSciNet  MATH  Google Scholar 

  59. König, W.: Orthogonal polynomial ensembles in probability theory. Probab. Surv. 2, 385–447 (2005)

    MathSciNet  MATH  Google Scholar 

  60. Kunz, H.: The one-dimensional classical electron gas. Ann. Phys. 85, 303–335 (1975)

    MathSciNet  Google Scholar 

  61. Lambert, G., Ledoux, M., Webb, C.: Stein’s Method for Normal Approximation of Linear Statistics of Beta-Ensembles (2017). arXiv preprint arXiv:1706.10251

  62. Leblé, T., Serfaty, S.: Fluctuations of Two-Dimensional Coulomb Gases (2016). arXiv preprint arXiv:1609.08088

  63. Leblé, T., Serfaty, S.: Large Deviation Principle for Empirical Fields of Log and Riesz Gases. arXiv preprint arXiv:1502.02970. To appear in Invent. Math. (2015)

  64. Leblé, T.: Local Microscopic Behavior for 2D Coulomb Gases (2015). arXiv preprint arXiv:1510.01506

  65. Lebowitz, J.L.: Charge fluctuations in coulomb systems. Phys. Rev. A 27, 1491–1494 (1983)

    Google Scholar 

  66. Lenard, A.: Exact statistical mechanics of a one-dimensional system with Coulomb forces. J. Math. Phys. 2, 682–693 (1961)

    MathSciNet  MATH  Google Scholar 

  67. Lenard, A.: Exact statistical mechanics of a one-dimensional system with Coulomb forces. III. Statistics of the electric field. J. Math. Phys. 4, 533–543 (1963)

    MathSciNet  MATH  Google Scholar 

  68. Marchetti, D.H.U., Perez, J.F.: The Kosterlitz–Thouless phase transition in two-dimensional hierarchical Coulomb gases. J. Stat. Phys. 55(1–2), 141–156 (1989)

    MathSciNet  Google Scholar 

  69. Marino, R., Majumdar, S.N., Schehr, G., Vivo, P.: Phase transitions and edge scaling of number variance in Gaussian random matrices. Phys. Rev. Lett. 112, 254101 (2014)

    Google Scholar 

  70. Marino, R., Majumdar, S.N., Schehr, G., Vivo, P.: Number statistics for \(\beta \)-ensembles of random matrices: applications to trapped fermions at zero temperature. Phys. Rev. E 94, 032115 (2016)

    Google Scholar 

  71. Martin, P.: Sum rules in charged fluids. Rev. Mod. Phys. 60(4), 1075–1127 (1988)

    MathSciNet  Google Scholar 

  72. Martin, P., Yalcin, T.: The charge fluctuations in classical Coulomb systems. J. Stat. Phys. 22(4), 435–463 (1980)

    MathSciNet  Google Scholar 

  73. Nazarov, F., Sodin, M.: Fluctuations in random complex zeroes: asymptotic normality revisited. Int. Math. Res. Not. IMRN 2011(24), 5720–5759 (2011)

    MathSciNet  MATH  Google Scholar 

  74. Nazarov, F., Sodin, M., Volberg, A.: Transportation to random zeroes by the gradient flow. Geom. Funct. Anal. 17(3), 887–935 (2007)

    MathSciNet  MATH  Google Scholar 

  75. Nazarov, F., Sodin, M., Volberg, A.: The Jancovici–Lebowitz–Manificat law for large fluctuations of random complex zeroes. Commun. Math. Phys. 284(3), 833–865 (2008)

    MathSciNet  MATH  Google Scholar 

  76. Pastur, L.: Limiting laws of linear eigenvalue statistics for Hermitian matrix models. J. Math. Phys. 47(10), 103303 (2006). 22 pp

    MathSciNet  MATH  Google Scholar 

  77. Peres, Y., Sly, A.: Rigidity and tolerance for perturbed lattices (2014). arXiv preprint arXiv:1409.4490

  78. Petz, D., Hiai, F.: Logarithmic energy as an entropy functional. Contemporary Mathematics, vol. 1998. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  79. Radin, C.: The ground state for soft disks. J. Stat. Phys. 26(2), 365–373 (1981)

    MathSciNet  Google Scholar 

  80. Rider, B., Virág, B.: The noise in the circular law and the Gaussian free field. Int. Math. Res. Not. IMRN, 2007 no. 2, Art. ID rnm006 (2007)

  81. Rougerie, N., Serfaty, S.: Higher-dimensional Coulomb gases and renormalized energy functionals. Commun. Pure Appl. Math. 69(3), 519–605 (2016)

    MathSciNet  MATH  Google Scholar 

  82. Sandier, E., Serfaty, S.: 2D Coulomb gases and the renormalized energy. Ann. Probab. 43(4), 2026–2083 (2015)

    MathSciNet  MATH  Google Scholar 

  83. Serfaty, S.: Ginzburg-Landau vortices, Coulomb gases, and renormalized energies. J. Stat. Phys. 154(3), 660–680 (2014)

    MathSciNet  MATH  Google Scholar 

  84. Serfaty, S.: Coulomb gases and Ginzburg–Landau vortices. European Mathematical Society (EMS), Zürich (2015)

    MATH  Google Scholar 

  85. Shcherbina, M.: Fluctuations of linear eigenvalue statistics of \(\beta \) matrix models in the multi-cut regime. J. Stat. Phys. 151(6), 1004–1034 (2013)

    MathSciNet  MATH  Google Scholar 

  86. Soshnikov, A.: Gaussian limit for determinantal random point fields. Ann. Probab. 30(1), 171–187 (2002)

    MathSciNet  MATH  Google Scholar 

  87. Tao, T., Vu, V.: Random matrices: the circular law. Commun. Contemp. Math. 10(2), 261–307 (2008)

    MathSciNet  MATH  Google Scholar 

  88. Tao, T., Vu, V.: Random matrices: sharp concentration of eigenvalues. Random Matrices Theory Appl. 2(3), 1350007 (2013). 31 pp

    MathSciNet  MATH  Google Scholar 

  89. Tao, T., Vu, V.: Random matrices: universality of local spectral statistics of non-Hermitian matrices. Ann. Probab. 43(2), 782–874 (2015)

    MathSciNet  MATH  Google Scholar 

  90. Torquato, S., Scardicchio, A., Zachary, C.E.: Point processes in arbitrary dimension from fermionic gases, random matrix theory, and number theory. J. Stat. Mech. Theory Exp. 2008(11), P11019 (2008)

    MathSciNet  MATH  Google Scholar 

  91. Wieand, K.: Eigenvalue distributions of random unitary matrices. Probab. Theory Relat. Fields 123(2), 202–224 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I thank Erik Bates for carefully checking the proofs, and Paul Bourgade, Persi Diaconis, Subhro Ghosh, Adrien Hardy, Joel Lebowitz, Satya Majumdar, Charles Radin, Sylvia Serfaty and H.-T. Yau for helpful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourav Chatterjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research partially supported by NSF Grant DMS-1608249.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, S. Rigidity of the three-dimensional hierarchical Coulomb gas. Probab. Theory Relat. Fields 175, 1123–1176 (2019). https://doi.org/10.1007/s00440-019-00912-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-019-00912-6

Keywords

Mathematics Subject Classification

Navigation