Amelunxen, D., Lotz, M.: Intrinsic volumes of polyhedral cones: a combinatorial perspective. Discrete Comput. Geom. 58(2), 371–409 (2017)
MathSciNet
Article
Google Scholar
Amelunxen, D., Lotz, M., McCoy, M., Tropp, J.: Living on the edge: phase transitions in convex programs with random data. Inf. Inference 3, 224–294 (2014)
MathSciNet
Article
Google Scholar
Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory, Volume 137 of Graduate Texts in Mathematics. Springer, New York (1992). https://doi.org/10.1007/b97238
Book
MATH
Google Scholar
Bárány, I.: Intrinsic volumes and \(f\)-vectors of random polytopes. Math. Ann. 285(4), 671–699 (1989). https://doi.org/10.1007/BF01452053
MathSciNet
Article
MATH
Google Scholar
Bárány, I., Hug, D., Reitzner, M., Schneider, R.: Random points in halfspheres. Random Struct. Algorithms 50(1), 3–22 (2017). https://doi.org/10.1002/rsa.20644
MathSciNet
Article
MATH
Google Scholar
Besau, F., Werner, E.M.: The spherical convex floating body. Adv. Math. 301, 867–901 (2016)
MathSciNet
Article
Google Scholar
Bonnet, G., Grote, J., Temesvari, D., Thäle, C., Turchi, N., Wespi, F.: Monotonicity of facet numbers of random convex hulls. J. Math. Anal. Appl. 455(2), 1351–1364 (2017)
MathSciNet
Article
Google Scholar
Buchta, C.: An identity relating moments of functionals of convex hulls. Discrete Comput. Geom. 33(1), 125–142 (2005). https://doi.org/10.1007/s00454-004-1109-3
MathSciNet
Article
MATH
Google Scholar
Carnal, H.: Die konvexe Hülle von n rotations-symmetrisch verteilten Punkten. Z. Wahrscheinlichkeitstheor. Verw. Geb. 15, 168–176 (1970). https://doi.org/10.1007/BF00531885
Article
MATH
Google Scholar
Cover, T.M., Efron, B.: Geometrical probability and random points on a hypersphere. Ann. Math. Stat. 38, 213–220 (1967). https://doi.org/10.1214/aoms/1177699073
MathSciNet
Article
MATH
Google Scholar
Davis, R., Mulrow, E., Resnick, S.: The convex hull of a random sample in \({{ R}}^2\). Commun. Stat. Stoch. Models 3(1), 1–27 (1987)
Article
Google Scholar
Efron, B.: The convex hull of a random set of points. Biometrika 52, 331–343 (1965)
MathSciNet
Article
Google Scholar
Glasauer, S.: Integralgeometrie konvexer Körper im sphärischen Raum. Ph.D. Thesis, University of Freiburg. http://www.hs-augsburg.de/~glasauer/publ/diss.pdf (1995). Accessed 25 Mar 2019
Grünbaum, B.: Grassmann angles of convex polytopes. Acta Math. 121, 293–302 (1968)
MathSciNet
Article
Google Scholar
Hörrmann, J., Hug, D., Reitzner, M., Thäle, C.: Poisson polyhedra in high dimensions. Adv. Math. 281, 1–39 (2015)
MathSciNet
Article
Google Scholar
Hug, D.: Random polytopes. In: Stochastic Geometry, Spatial Statistics and Random Fields. Asymptotic Methods. Selected papers based on the presentations at the summer academy on stochastic geometry, spatial statistics and random fields, Söllerhaus, September 13–26, 2009, pp. 205–238. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-33305-7_7
Google Scholar
Hug, D., Schneider, R.: Random conical tessellations. Discrete Comput. Geom. 56(2), 395–426 (2016)
MathSciNet
Article
Google Scholar
Kabluchko, Z., Temesvari, D., Thäle, C.: Expected intrinsic volumes and facet numbers of random beta-polytopes. Math. Nachr. 292, 79–105 (2019)
MathSciNet
Article
Google Scholar
Kallenberg, O.: Random Measures. Akademie-Verlag, Berlin; Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 3rd edn. (1983)
Kallenberg, O.: Foundations of Modern Probability. Probability and Its Applications, 2nd edn. Springer, New York (2002)
Book
Google Scholar
Majumdar, S.N., Comtet, A., Randon-Furling, J.: Random convex hulls and extreme value statistics. J. Stat. Phys. 138(6), 955–1009 (2010)
MathSciNet
Article
Google Scholar
Miles, R.E.: Isotropic random simplices. Adv. Appl. Probab. 3, 353–382 (1971). https://doi.org/10.2307/1426176
MathSciNet
Article
MATH
Google Scholar
Molchanov, I.: Theory of Random Sets. Probability and Its Applications. Springer, London (2005)
Google Scholar
Reitzner, M.: The combinatorial structure of random polytopes. Adv. Math. 191(1), 178–208 (2005). https://doi.org/10.1016/j.aim.2004.03.006
MathSciNet
Article
MATH
Google Scholar
Rényi, A., Sulanke, R.: Über die konvexe Hülle von \(n\) zufällig gewählten Punkten. Z. Wahrscheinlichkeitstheor. Verw. Geb. 2, 75–84 (1963). https://doi.org/10.1007/BF00535300
Article
MATH
Google Scholar
Rényi, A., Sulanke, R.: Über die konvexe Hülle von \(n\) zufällig gewählten Punkten. II. Z. Wahrscheinlichkeitstheor. Verw. Geb. 3, 138–147 (1964). https://doi.org/10.1007/BF00535973
Article
MATH
Google Scholar
Resnick, S.: Extreme Values, Regular Variation, and Point Processes, Volume 4 of Applied Probability. Springer, New York (1987)
Book
Google Scholar
Rogers, L.C.G.: The probability that two samples in the plane will have disjoint convex hulls. J. Appl. Probab. 15, 790–802 (1978). https://doi.org/10.2307/3213434
MathSciNet
Article
MATH
Google Scholar
Schneider, R.: Recent results on random polytopes. Boll. Unione Mat. Ital. (9) 1(1), 17–39 (2008)
MathSciNet
MATH
Google Scholar
Schneider, R.: Weighted faces of Poisson hyperplane tessellations. Adv. Appl. Probab. 41(3), 682–694 (2009)
MathSciNet
Article
Google Scholar
Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, Volume 151 of Encyclopedia of Mathematics and Its Applications, expanded edition. Cambridge University Press, Cambridge (2014)
Schneider, R., Weil, W.: Stochastic and Integral Geometry. Probability and Its Applications. Springer, Berlin (2008)
Book
Google Scholar
Schütt, C.: Random polytopes and affine surface area. Math. Nachr. 170, 227–249 (1994). https://doi.org/10.1002/mana.19941700117
MathSciNet
Article
MATH
Google Scholar
Wieacker, J.A.: Einige Probleme der polyedrischen Approximation. Diploma Thesis, University of Freiburg (1978)