Skip to main content
Log in

Polluted bootstrap percolation with threshold two in all dimensions

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

In the polluted bootstrap percolation model, the vertices of a graph are independently declared initially occupied with probability p or closed with probability q. At subsequent steps, a vertex becomes occupied if it is not closed and it has at least r occupied neighbors. On the cubic lattice \({\mathbb {Z}}^d\) of dimension \(d\ge 3\) with threshold \(r=2\), we prove that the final density of occupied sites converges to 1 as p and q both approach 0, regardless of their relative scaling. Our result partially resolves a conjecture of Morris, and contrasts with the \(d=2\) case, where Gravner and McDonald proved that the critical parameter is \(q/{p^2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amini, H, Fountoulakis, N., Panagiotou, K.: Bootstrap percolation in inhomogeneous random graphs. arXiv:1402.2815

  2. Aizenman, M., Grimmett, G.: Strict monotonicity for critical points in percolation and ferromagnetic models. J. Stat. Phys. 63(5–6), 817–835 (1991)

    Article  MathSciNet  Google Scholar 

  3. Aizenman, M., Lebowitz, J.L.: Metastability effects in bootstrap percolation. J. Phys. A 21(19), 3801–3813 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balogh, J., Bollobás, B., Duminil-Copin, H., Morris, R.: The sharp threshold for bootstrap percolation in all dimensions. Trans. Am. Math. Soc. 364(5), 2667–2701 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bollobás, B., Balister, P., Riordan, O.: Essential enhancements revisited. arXiv:1402.0834

  6. Baxter, G.J., Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.: Heterogeneous k-core versus bootstrap percolation on complex networks. Phys. Rev. E 83(5), 051134 (2011)

    Article  Google Scholar 

  7. Baxter, G.J., Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Bootstrap percolation on complex networks. Phys. Rev. E 82, 011103 (2010)

    Article  Google Scholar 

  8. Bollobás, B., Duminil-Copin, H., Morris, R., Smith, P.: Universality of two-dimensional critical cellular automata. In: Proceedings of London Mathematical Society. To appear

  9. Bodineau, T., Teixeira, A.: Interface motion in random media. Commun. Math. Phys. 334(2), 843–865 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a Bethe lattice. J. Phys. C Solid State Phys. 12(1), L31 (1979)

    Article  Google Scholar 

  11. Dirr, N., Dondl, P.W., Grimmett, G.R., Holroyd, A.E., Scheutzow, M.: Lipschitz percolation. Electron. Commun. Probab. 15, 14–21 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dirr, N., Dondl, P.W., Scheutzow, M.: Pinning of interfaces in random media. Interfaces Free Bound 13(3), 411–421 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Damron, M., Eckner, S.M., Kogan, H., Newman, C.M., Sidoravicius, V.: Coarsening dynamics on \({\mathbb{Z}}^d\) with frozen vertices. J. Stat. Phys. 160(1), 60–72 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duminil-Copin, H., van Enter, A.C.D.: Sharp metastability threshold for an anisotropic bootstrap percolation model. Ann. Probab. 41(3A), 1218–1242 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gravner, J., Griffeath, D.: First passage times for threshold growth dynamics on \({ Z}^2\). Ann. Probab. 24(4), 1752–1778 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grimmett, G.R., Holroyd, A.E.: Plaquettes, spheres, and entanglement. Electron. J. Probab. 15, 1415–1428 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grimmett, G.R., Holroyd, A.E.: Geometry of Lipschitz percolation. Ann. Inst. Henri Poincaré Probab. Stat. 48(2), 309–326 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grimmett, G.R., Holroyd, A.E.: Lattice embeddings in percolation. Ann. Probab. 40(1), 146–161 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gravner, J., Holroyd, A.E., Morris, R.: A sharper threshold for bootstrap percolation in two dimensions. Probab. Theory Relat. Fields 153(1–2), 1–23 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gravner,J., Holroyd, A. E., Sivakoff, D.: Polluted bootstrap percolation in three dimensions. arXiv:1706.07338

  21. Garet, O., Marchand, R.: Asymptotic shape for the chemical distance and first-passage percolation on the infinite Bernoulli cluster. ESAIM Probab. Stat. 8, 169–199 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gravner, J., McDonald, E.: Bootstrap percolation in a polluted environment. J. Statist. Phys. 87(3–4), 915–927 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grimmett, G.R.: Percolation, 2nd edn. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  24. Gao, J., Zhou, T., Hu, Y.: Bootstrap percolation on spatial networks. Scientific reports 5 (2015)

  25. Holroyd, A.E., Martin, J.B.: Stochastic domination and comb percolation. Electron. J. Probab. 19(5), 1–16 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Holroyd, A.E.: Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theory Relat. Fields 125(2), 195–224 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Janson, S., Łuczak, T., Turova, T., Vallier, T.: Bootstrap percolation on the random graph \(G_{n, p}\). Ann. Appl. Probab. 22(5), 1989–2047 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Koch, C., Lengler, J.: Bootstrap percolation on geometric inhomogeneous random graphs. arXiv:1603.02057

  29. Liggett, T.M., Schonmann, R.H., Stacey, A.M.: Domination by product measures. Ann. Probab. 25(1), 71–95 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Morris, R.: Bootstrap percolation, and other automata. European Journal of Combinatorics. To appear

  31. Morris, B., Peres., Y.: Evolving sets and mixing. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pp. 279–286. ACM, New York (2003)

  32. Schonmann, R.H.: On the behavior of some cellular automata related to bootstrap percolation. Ann. Probab. 20(1), 174–193 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. van Enter, A.C.D.: Proof of Straley’s argument for bootstrap percolation. J. Statist. Phys. 48(3–4), 943–945 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank David Sivakoff for many valuable discussions. Janko Gravner was partially supported by the NSF grant DMS–1513340, Simons Foundation Award #281309, and the Slovenian Research Agency program P1–285. He also gratefully acknowledges the hospitality of the Theory Group at Microsoft Research, where most of this work was completed. We thank the anonymous referee for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander E. Holroyd.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gravner, J., Holroyd, A.E. Polluted bootstrap percolation with threshold two in all dimensions. Probab. Theory Relat. Fields 175, 467–486 (2019). https://doi.org/10.1007/s00440-018-0892-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-018-0892-3

Keywords

Mathematics Subject Classification

Navigation