Skip to main content
Log in

The k-tacnode process

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

The tacnode process is a universal behavior arising in nonintersecting particle systems and tiling problems. For Dyson Brownian bridges, the tacnode process describes the grazing collision of two packets of walkers. We consider such a Dyson sea on the unit circle with drift. For any \(k\in \mathbb {Z}\), we show that an appropriate double scaling of the drift and return time leads to a generalization of the tacnode process in which k particles are expected to wrap around the circle. We derive winding number probabilities and an expression for the correlation kernel in terms of functions related to the generalized Hastings–McLeod solutions to the inhomogeneous Painlevé-II equation. The method of proof is asymptotic analysis of discrete orthogonal polynomials with a complex weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adler, M., Delépine, J., van Moerbeke, P.: Dyson’s nonintersecting Brownian motions with a few outliers. Commun. Pure Appl. Math. 62, 334–395 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adler, M., Delépine, J., van Moerbeke, P., Vanhaecke, P.: A PDE for non-intersecting Brownian motions and applications. Adv. Math. 226, 1715–1755 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adler, M., Ferrari, P., van Moerbeke, P.: Nonintersecting random walks in the neighborhood of a symmetric tacnode. Ann. Probab. 41, 2599–2647 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Adler, M., Johansson, K., van Moerbeke, P.: Double Aztec diamonds and the tacnode process. Adv. Math. 252, 518–571 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Adler, M., Orantin, N., van Moerbeke, P.: Universality for the Pearcey process. Phys. D 239, 924–941 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baik, J.: Painlevé formulas of the limiting distributions for non-null complex sample covariance matrices. Duke Math. J. 133, 205–235 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baik, J., Ben Arous, G., Péché, S.: Phase transitions of the largest eigenvalue for non-null complex sample covariance matrices. Ann. Probab. 33, 1643–1697 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Baik, J., Wang, D.: On the largest eigenvalue of a Hermitian random matrix model with spiked external source II: higher rank cases. Int. Math. Res. Not. IMRN 2013, 3304–3370 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bertola, M., Bothner, T.: Zeros of large degree Vorob’ev–Yablonski polynomials via a Hankel determinant identity. Int. Math. Res. Not. IMRN 2015, 9330–9399 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bertola, M., Buckingham, R., Lee, S., Pierce, V.: Spectra of random Hermitian matrices with a small-rank external source: the critical and near-critical regimes. J. Stat. Phys. 146, 475–518 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bertola, M., Cafasso, M.: The gap probabilities of the tacnode, Pearcey and Airy point processes, their mutual relationship and evaluation. Random Matrices Theory Appl. 2, 1350003 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bertola, M., Lee, S.: First colonization of a spectral outpost in random matrix theory. Constr. Approx. 30, 225–263 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bleher, P., Kuijlaars, A.: Large n limit of Gaussian random matrices with external source. III. Double scaling limit. Commun. Math. Phys. 270, 481–517 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bleher, P., Liechty, K.: Uniform asymptotics for discrete orthogonal polynomials with respect to varying exponential weights on a regular infinite lattice. Int. Math. Res. Not. IMRN 2011, 342–386 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Buckingham, R., Liechty, K.: Nonintersecting Brownian bridges on the unit circle with drift. J. Funct. Anal. (2018). https://doi.org/10.1016/j.jfa.2018.05.021

  16. Buckingham, R., Miller, P.: The sine-Gordon equation in the semiclassical limit: critical behavior near a separatrix. J. Anal. Math. 118, 397–492 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Buckingham, R., Miller, P.: Large-degree asymptotics of rational Painlevé-II functions: critical behaviour. Nonlinearity 28, 1539–1596 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chester, C., Friedman, B., Ursell, F.: An extension of the method of steepest descents. Proc. Camb. Philos. Soc. 53, 599–661 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  19. Claeys, T., Grava, T.: Solitonic asymptotics for the Korteweg–de Vries equation in the small dispersion limit. SIAM J. Math. Anal. 42, 2132–2154 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Claeys, T., Kuijlaars, A., Vanlessen, M.: Multi-critical unitary random matrix ensembles and the general Painlevé II equation. Ann. Math. (2) 167, 601–641 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dai, D., Hu, W.: On the quasi-Ablowitz–Segur and quasi-Hastings–McLeod solutions of the inhomogeneous Painlevé II equation. Random Matrices Theory Appl. 7, 1840004 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Deaño, A.: Large degree asymptotics of orthogonal polynomials with respect to an oscillatory weight on a bounded interval. J. Approx. Theory 186, 33–63 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Deift, P.: Polynomials, Orthogonal, Random Matrices: A Riemann–Hilbert Approach. Courant Lecture Notes in Mathematics 3. Amer. Math. Soc., Providence, RI (1998)

  24. Deift, P., Kriecherbauer, T., McLaughlin, K., Venakides, S., Zhou, X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Commun. Pure Appl. Math. 52, 1335–1425 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. (2) 137, 295–368 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Deift, P., Zhou, X.: Asymptotics for the Painlevé II equation. Commun. Pure Appl. Math. 48, 277–337 (1995)

    Article  MATH  Google Scholar 

  27. Delvaux, S.: Non-intersecting squared Bessel paths at a hard-edge tacnode. Commun. Math. Phys. 324, 715–766 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Delvaux, S.: The tacnode kernel: equality of Riemann–Hilbert and Airy resolvent formulas. Int. Math. Res. Not. IMRN 2018, 160–201 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Delvaux, S., Geudens, D., Zhang, L.: Universality and critical behaviour in the chiral two-matrix model. Nonlinearity 26, 2231–2298 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Delvaux, S., Kuijlaars, A., Zhang, L.: Critical behavior of nonintersecting Brownian motions at a tacnode. Commun. Pure Appl. Math. 64, 1305–1383 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Desrosiers, P., Forrester, P.: A note on biorthogonal ensembles. J. Approx. Theory 152, 167–187 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Duits, M., Geudens, D.: A critical phenomenon in the two-matrix model in the quartic/quadratic case. Duke Math. J. 162, 1383–1462 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Eynard, B., Mehta, M.: Matrices coupled in a chain. I. Eigenvalue correlations. J. Phys. A 31, 4449–4456 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ferrari, P., Vető, B.: Non-colliding Brownian bridges and the asymmetric tacnode process. Electron. J. Probab. 17 (2012). https://doi.org/10.1214/EJP.v17-1811

  35. Flaschka, H., Newell, A.: Monodromy and spectrum-preserving deformations I. Commun. Math. Phys. 76, 65–116 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  36. Fokas, A., Its, A., Kapaev, A., Novokshenov, V.: Painlevé Transcendents Approach. The Riemann–Hilbert Approach. AMS Mathematical Surveys and Mongraphs, vol. 128. Amer. Math. Soc., Providence (2006)

    Book  MATH  Google Scholar 

  37. Fokas, A., Its, A., Kitaev, A.: Discrete Painlevé equations and their appearance in quantum gravity. Commun. Math. Phys. 142, 313–344 (1991)

    Article  MATH  Google Scholar 

  38. Gessel, I., Viennot, G.: Binomial determinants, paths, and hook length formulae. Adv. Math. 58, 300–321 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  39. Geudens, D., Zhang, L.: Transitions between critical kernels: from the tacnode kernel and critical kernel in the two-matrix model to the Pearcey kernel. Int. Math. Res. Not. IMRN 2015, 5733–5782 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Girotti, M.: Asymptotics of the tacnode process: a transition between the gap probabilities from the tacnode to the Airy process. Nonlinearity 27, 1937–1968 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Huybrechs, D., Kuijlaars, A., Lejon, N.: Zero distribution of complex orthogonal polynomials with respect to exponential weights. J. Approx. Theory 184, 28–54 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Its, A., Kapaev, A.: Quasi-linear Stokes phenomenon for the second Painlevé transcendent. Nonlinearity 16, 363–386 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Jimbo, M., Miwa, T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Physica D 2, 407–448 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  44. Johansson, K.: Non-colliding Brownian motions and the extended tacnode process. Commun. Math. Phys. 319, 231–267 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Karlin, S., McGregor, J.: Coincidence probabilities. Pac. J. Math. 9, 1141–1164 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kuijlaars, A.: The tacnode Riemann–Hilbert problem. Constr. Approx. 39, 197–222 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kuijlaars, A., Martínez-Finkelshtein, A., Wielonsky, F.: Non-intersecting squared Bessel paths: critical time and double scaling limit. Commun. Math. Phys. 308, 227–279 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Liechty, K.: Nonintersecting Brownian motions on the half line and discrete Gaussian orthogonal polynomials. J. Stat. Phys. 147, 582–622 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Liechty, K., Wang, D.: Nonintersecting Brownian motions on the unit circle. Ann. Probab. 44, 1134–1211 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Liechty, K., Wang, D.: Two Lax systems for the Painlevé II equation, and two related kernels in random matrix theory. SIAM J. Math. Anal. 48, 3618–3666 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Liechty, K., Wang, D.: Nonintersecting Brownian bridges between reflecting or absorbing walls. Adv. Math. 309, 155–208 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  52. Lindström, B.: On the vector representations of induced matroids. Bull. Lond. Math. Soc. 5, 85–90 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  53. Mehta, M.: Random Matrices, 3rd edn. Elsevier/Academic Press, Amsterdam (2004)

    MATH  Google Scholar 

  54. Tracy, C., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–174 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  55. Tracy, C., Widom, H.: The Pearcey process. Commun. Math. Phys. 263, 381–400 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  56. Tracy, C., Widom, H.: Nonintersecting Brownian excursions. Ann. Appl. Probab. 17, 953–979 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Liechty.

Additional information

The authors thank the anonymous referee for helpful suggestions. They also thank Dong Wang, who was involved in this project at an early stage. Robert Buckingham was supported by by the National Science Foundation through Grant DMS-1615718 and by the Charles Phelps Taft Research Center through a Faculty Release Fellowship. Karl Liechty was supported by the Simons Foundation through Grant #357872.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buckingham, R., Liechty, K. The k-tacnode process. Probab. Theory Relat. Fields 175, 341–395 (2019). https://doi.org/10.1007/s00440-018-0885-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-018-0885-2

Mathematics Subject Classification

Navigation