Skip to main content
Log in

On tessellations of random maps and the \(t_g\)-recurrence

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We study the masses of the two cells in a Voronoï tessellation of the Brownian surface of genus \(g\ge 0\) centered on two uniform random points. Making use of classical bijections and asymptotic estimates for maps of fixed genus, we relate the second moment of these random variables to the Painlevé-I equation satisfied by the double scaling limit of the one-matrix model, or equivalently to the “\(t_g\)-recurrence” satisfied by the constants \(t_g\) driving the asymptotic number of maps of genus \(g\ge 0\). This raises the question of giving an independent probabilistic or combinatorial derivation of this second moment, which would then lead to new proof of the \(t_g\)-recurrence. More generally we conjecture that for any \(g\ge 0\) and \(k\ge 2\), the masses of the cells in a Voronoï tessellation of the genus-g Brownian surface by k uniform points follows a Dirichlet\((1,1,\ldots ,1)\) distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. If \(U_1,U_2\) are two independent uniforms on [0, 1] and \(I_1, I_2, I_3\) are the lengths of the three intervals they define, then \(\mathbf {E} (I_1I_2I_3)\) is the probability that five independent uniforms \(U_1,U_2,V_1,V_2,V_3\) are ordered as \(V_1<U_{1}\wedge U_2<V_2<U_1\vee U_{2}<V_3\), which is clearly equal to \(\frac{2}{5!}=\tfrac{1}{60}\).

  2. After a first version of this paper was made public, Emmanuel Guitter was able to apply this idea, and checked by a “semi-rigourous” calculation that for \((g,k)=(0,2)\) the law is indeed uniform [18]. Guitter’s remarkable calculation is computer assisted and very heavy, moreover fully justifying all of the needed approximations seems technically difficult—yet it strongly supports our conjecture. This method seems unfit to apply to general values of k (or g), and probably too heavy to apply to any other value of (gk).

  3. We thank a referee for this remark.

  4. Strictly speaking, these notions are defined only for dominant maps in that reference. Here it will be convenient for the presentation of the decompositions to extend them to general 3-nodes—but this is not a fundamental need, since all quantities involved in our discussion will be led by dominant maps at the first order.

References

  1. Addario-Berry, L., Angel, O., Chapuy, G., Fusy, É., Goldschmidt, C.: Voronoi tessellations in the CRT and continuum random maps of finite excess. In: Proceedings of SODA 2018, New Orleans (2018)

  2. Bender, E.A., Canfield, E.R.: The asymptotic number of rooted maps on a surface. J. Combin. Theory Ser. A 43(2), 244–257 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bettinelli, J.: Scaling limits for random quadrangulations of positive genus. Electron. J. Probab. 15(52), 1594–1644 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bettinelli, J.: The topology of scaling limits of positive genus random quadrangulations. Ann. Probab. 40(5), 1897–1944 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bender, E.A., Gao, Z., Richmond, L.B.: The map asymptotics constant \(t_g\). Electron. J. Combin. 15(1):Research paper 51, 8 (2008)

  6. Bettinelli, J., Miermont, G.: In preparation

  7. Bousquet-Mélou, M., Janson, S.: The density of the ISE and local limit laws for embedded trees. Ann. Appl. Probab. 16(3), 1597–1632 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carrell, S.R.: The Non-Orientable Map Asymptotics Constant \(p\_g\). ArXiv e-prints (2014)

  9. Carrell, S.R., Chapuy, G.: Simple recurrence formulas to count maps on orientable surfaces. J. Combin. Theory Ser. A 133, 58–75 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chapuy, G., Dołȩega, M.: A bijection for rooted maps on general surfaces. J. Combin. Theory Ser. A 145, 252–307 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chapuy, G.: The structure of unicellular maps, and a connection between maps of positive genus and planar labelled trees. Probab. Theory Relat. Fields 147(3–4), 415–447 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chapuy, G., Marcus, M., Schaeffer, G.: A bijection for rooted maps on orientable surfaces. SIAM J. Discrete Math. 23(3), 1587–1611 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chassaing, P., Schaeffer, G.: Random planar lattices and integrated super Brownian excursion. Probab. Theory Relat. Fields 128(2), 161–212 (2004)

    Article  MATH  Google Scholar 

  14. Cori, R., Vauquelin, B.: Planar maps are well labeled trees. Can. J. Math. 33(5), 1023–1042 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  16. Goulden, I.P., Jackson, D.M.: The KP hierarchy, branched covers, and triangulations. Adv. Math. 219(3), 932–951 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Garoufalidis, S., Mariño, M.: Universality and asymptotics of graph counting problems in non-orientable surfaces. J. Combin. Theory Ser. A 117(6), 715–740 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guitter, E.: On a conjecture by Chapuy about Voronoï cells in large maps. J. Stat. Mech. Theory Exp. 2017(10), 103401 (2017)

    Article  Google Scholar 

  19. Kazakov, V.A., Kostov, I.K., Nekrasov, N.: D-particles, matrix integrals and KP hierarchy. Nucl. Phys. B 557(3), 413–442 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Le Gall, J.-F.: Uniqueness and universality of the Brownian map. Ann. Probab. 41(4), 2880–2960 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Le Gall, J.-F., Miermont, G.: Scaling limits of random trees and planar maps. In: Probability and Statistical Physics in Two and More Dimensions, vol. 15 of Clay Mathematics Proceedings, pp. 155–211. American Mathematical Society, Providence, RI (2012)

  22. Lando, S.K., Zvonkin, A.K.: Graphs on Surfaces and Their Applications, volume 141 of Encyclopaedia of Mathematical Sciences. Springer, Berlin. With an appendix by Don B. Zagier, Low-Dimensional Topology, II (2004)

  23. Miermont, G.: Tessellations of random maps of arbitrary genus. Ann. Sci. Éc. Norm. Supér. (4) 42(5), 725–781 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Miermont, G.: The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210(2), 319–401 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Marcus, M., Schaeffer, G.: Une bijection simple pour les cartes orientables. Manuscript (2001)

  26. Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map I: the QLE(8/3,0) metric. ArXiv e-prints (2015)

  27. Schaeffer, G.: Conjugaison d’arbres et cartes combinatoires aléatoires. PhD thesis, Université Bordeaux I (1998)

  28. Tutte, W.T.: A census of planar maps. Can. J. Math. 15, 249–271 (1963)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Chapuy.

Additional information

Support from the European Research Council, Grant ERC-2016-STG 716083 “CombiTop”, from Agence Nationale de la Recherche, Grant Number ANR 12-JS02-001-01 “Cartaplus”, and from the City of Paris, Grant “Émergences Paris 2013, Combinatoire à Paris”. Part of this research was done while I was affiliated with the CRM, UMI CNRS 3457, Université de Montréal, Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chapuy, G. On tessellations of random maps and the \(t_g\)-recurrence. Probab. Theory Relat. Fields 174, 477–500 (2019). https://doi.org/10.1007/s00440-018-0865-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-018-0865-6

Navigation