Skip to main content
Log in

The power of online thinning in reducing discrepancy

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

Consider an infinite sequence of independent, uniformly chosen points from \([0,1]^d\). After looking at each point in the sequence, an overseer is allowed to either keep it or reject it, and this choice may depend on the locations of all previously kept points. However, the overseer must keep at least one of every two consecutive points. We call a sequence generated in this fashion a two-thinning sequence. Here, the purpose of the overseer is to control the discrepancy of the empirical distribution of points, that is, after selecting n points, to reduce the maximal deviation of the number of points inside any axis-parallel hyper-rectangle of volume A from nA. Our main result is an explicit low complexity two-thinning strategy which guarantees discrepancy of \(O(\log ^{2d+1} n)\) for all n with high probability [compare with \(\Theta (\sqrt{n\log \log n})\) without thinning]. The case \(d=1\) of this result answers a question of Benjamini. We also extend the construction to achieve the same asymptotic bound for (\(1+\beta \))-thinning, a set-up in which rejecting is only allowed with probability \(\beta \) independently for each point. In addition, we suggest an improved and simplified strategy which we conjecture to guarantee discrepancy of \(O(\log ^{d+1} n)\) [compare with \(\theta (\log ^d n)\), the best known construction of a low discrepancy sequence]. Finally, we provide theoretical and empirical evidence for our conjecture, and provide simulations supporting the viability of our construction for applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bilyk, D.: Roths orthogonal function method in discrepancy theory and some new connections. In: Chen, W., Srivastav, A., Travaglini, G. (eds.) A Panorama of Discrepancy Theory, pp. 71–158. Springer. Berlin (2014)

  2. Azar, Y., Broder, A., Karlin, A., Upfal, E.: Balanced allocations. SIAM J. Comput. 29(1), 180–200 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Peres, Y., Talwar, K., Wieder, U.: Graphical balanced allocations and the (\(1+\beta \))-choices process. Random Struct. Algorithms 47(4), 760–775 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berenbrink, P., Czumaj, A., Steger, A., Vöcking, B.: Balanced allocations: the heavily loaded case. SIAM J. Comput. 35(6), 1350–1385 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Talwar, K., Wieder, U.: Balanced Allocations: A Simple Proof for the Heavily Loaded Case. International Colloquium on Automata, Languages, and Programming. Springer, Berlin (2014)

    MATH  Google Scholar 

  6. Mitzenmacher, M.: The power of two choices in randomized load balancing. Ph.D. thesis, University of California, Berkeley, CA (1996)

  7. Feldheim, O.N., Gurel-Gurevich, O.: The power of thinning in ballanced allocation (2018) Preprint. arXiv:1807.01132 [math.PR]

  8. Kakutani, S.: A problem of equidistribution on the unit interval \([0,1]\). In: Proceedings of Oberwolfach Conference on Measure Theory. Lecture Notes in Mathematics, vol. 541, pp. 367–376 (1975)

  9. van Zwet, W.R.: A proof of Kakutanis conjecture on random subdivision of longest intervals. Annals Probab. 6(1), 133–137 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lootgieter, J.C.: Sur la répartition des suites de Kakutani. Annales l’Inst. Henri Poincaré (B) Probab. Stat. 13(4), 385–410 (1977)

    MathSciNet  MATH  Google Scholar 

  11. Donsker, M.: Justification and extension of Doobs heuristic approach to the Kolmogorov–Smirnov theorems. Annals Math. Stat. 23, 277–281 (1952)

    Article  MATH  Google Scholar 

  12. Pyke, R.: The asymptotic behavior of spacings under Kakutani’s model for interval subdivision. Annals Probab. 8(1), 157–163 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pyke, R., van Zwet, W.R.: Weak convergence results for the Kakutani interval splitting procedure. Annals Probab. 32(1), 380–423 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Maillard, P., Paquette, E.: Choices and intervals. Isr. J. Math. 212(1), 337–384 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Junge, M.: Choices, intervals and equidistribution. Electron. J. Probab. 20, 1 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bilyk, D., Lacey, M.T., Vagharshakyan, A.: On the small ball inequality in all dimensions. J. Funct. Anal. 254(9), 2470–2502 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Roth, K.F.: On irregularities of distribution. Mathematika 1(02), 73–79 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chazelle, B.: The Discrepancy Method: Randomness and Complexity. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  19. Chen, W.W.L., Skriganov, M.M.: Explicit constructions in the classical mean squares problem in irregularities of point distribution. J. Reine Angew. Math. 545, 67–95 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Chen, W.W.L., Skriganov, M.M.: Davenport’s theorem in the theory of irregularities of point distribution. J. Math. Sci. 115(1), 2076–2084 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Skriganov, M.M.: Harmonic analysis on totally disconnected groups and irregularities of point distributions. J. Reine Angew. 600, 25–49 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Owen, A.B.: Statistically efficient thinning of a Markov chain sampler. J. Comput. Graph. Stat. 26(3), 738–744 (2017). https://doi.org/10.1080/10618600.2017.1336446

    Article  MathSciNet  Google Scholar 

  23. Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  24. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. Society for Industrial and Applied mathematics, Philadelphia (1992)

    Book  MATH  Google Scholar 

  25. Dick, J., Kuo, F.Y., Sloan, I.H.: High-dimensional integration: the quasi-Monte Carlo way. Acta Numer. 22, 133–288 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dick, J., Pillichshammer, F.: Discrepancy theory and quasi-Monte Carlo integration. In: Chen, W., Srivastav, A., Travaglini, G. (eds.) A Panorama of Discrepancy Theory, pp. 539–619. Springer, Berlin (2014)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Itai Benjamini for suggesting the model of the power of two choices on interval partitions, to Yuval Peres for introducing to us related recent litrature, to Art Owen and Asaf Nachmias for insightful discussions and to a anonymous referee for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ori Gurel-Gurevich.

Additional information

Raaz Dwivedi: Research was supported by the Berkeley Fellowship. Ohad N. Feldheim: Research conducted in Stanford University and supported in part by NSF Grant DMS 1613091. Ori Gurel-Gurevich: Research was supported by the Israel Science Foundation (Grant No. 1707/16).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, R., Feldheim, O.N., Gurel-Gurevich, O. et al. The power of online thinning in reducing discrepancy. Probab. Theory Relat. Fields 174, 103–131 (2019). https://doi.org/10.1007/s00440-018-0860-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-018-0860-y

Keywords

Mathematics Subject Classification

Navigation