Exponential decay of connection probabilities for subcritical Voronoi percolation in \(\mathbb {R}^d\)
Article
First Online:
Received:
Revised:
- 29 Downloads
Abstract
We prove that for Voronoi percolation on \(\mathbb {R}^d\) \((d\ge 2)\), there exists \(p_c=p_c(d)\in (0,1)\) such that For dimension 2, this result offers a new way of showing that \(p_c(2)=1/2\). This paper belongs to a series of papers using the theory of algorithms to prove sharpness of the phase transition; see [10, 11].
-
for \(p<p_c\), there exists \(c_p>0\) such that \(\mathbb {P}_p[0\text { connected to distance }n]\le \exp (-c_pn)\),
-
there exists \(c>0\) such that for \(p>p_c, \mathbb {P}_p[0\text { connected to infinity}]\ge c(p-p_c)\).
Mathematics Subject Classification
60K35 82B21 82B43Notes
Acknowledgements
The authors are thankful to Asaf Nachmias for reading the manuscript and his helpful comments. This research was supported by the IDEX grant from Paris-Saclay, a grant from the Swiss FNS, and the NCCR SwissMAP.
References
- 1.Aizenman, M., Barsky, D.J.: Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108(3), 489–526 (1987)MathSciNetCrossRefMATHGoogle Scholar
- 2.Aizenman, M., Barsky, D.J., Fernández, R.: The phase transition in a general class of Ising-type models is sharp. J. Stat. Phys. 47(3–4), 343–374 (1987)MathSciNetCrossRefGoogle Scholar
- 3.Ahlberg, D., Griffiths, S., Morris, R., Tassion, V.: Quenched Voronoi percolation. Adv. Math. 286, 889–911 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 4.Beffara, V., Duminil-Copin, H.: The self-dual point of the two-dimensional random-cluster model is critical for \(q\ge 1\). Probab. Theory Relat. Fields 153(3–4), 511–542 (2012)CrossRefMATHGoogle Scholar
- 5.Broadbent, S.R., Hammersley, J.M.: Percolation processes. I. Crystals and mazes. Proc. Camb. Philos. Soc. 53, 629–641 (1957)MathSciNetCrossRefMATHGoogle Scholar
- 6.Bollobás, B., Riordan, O.: The critical probability for random Voronoi percolation in the plane is 1/2. Probab. Theory Relat. Fields 136(3), 417–468 (2006)MathSciNetCrossRefMATHGoogle Scholar
- 7.Bollobás, B., Riordan, O.: Percolation. Cambridge University Press, New York (2006)CrossRefMATHGoogle Scholar
- 8.Benjamini, I., Schramm, O.: Conformal invariance of Voronoi percolation. Commun. Math. Phys. 197(1), 75–107 (1998)MathSciNetCrossRefMATHGoogle Scholar
- 9.Duminil-Copin, H., Raoufi, A., Tassion, V.: A new computation of the critical point for the planar random-cluster model with \(q\ge 1\). Annales de l’Institut Henri Poincaré, Probabilités et Statistiques. Vol. 54. No. 1. Institut Henri Poincaré (2018)Google Scholar
- 10.Duminil-Copin, H., Raoufi, A., Tassion, V.: Sharpness of the phase transition for random-cluster and Potts models via decision trees. arXiv:1705.03104 (2017)
- 11.Duminil-Copin, H., Raoufi, A., Tassion, V.: Subcritical phase of \(d\)-dimensional Poisson-boolean percolation and its vacant set (in preparation) (2017)Google Scholar
- 12.Duminil-Copin, H., Tassion, V.: A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model. Commun. Math. Phys. 343(2), 725–745 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 13.Friedgut, E., Kalai, G.: Every monotone graph property has a sharp threshold. Proc. Am. Math. Soc. 124(10), 2993–3002 (1996)MathSciNetCrossRefMATHGoogle Scholar
- 14.Menshikov, M.V.: Coincidence of critical points in percolation problems. Dokl. Akad. Nauk SSSR 288(6), 1308–1311 (1986)MathSciNetGoogle Scholar
- 15.Meester, R., Roy, R.: Continuum Percolation. Cambridge University Press, New York (2008)MATHGoogle Scholar
- 16.O’Donnell, R., Saks, M., Schramm, O., Servedio, R.: Every decision tree has an influential variable. In: FOCS (2005)Google Scholar
- 17.Tassion, V.: Crossing probabilities for Voronoi percolation. Ann. Probab. 44(5), 3385–3398 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 18.Zvavitch, A.: The critical probability for Voronoi percolation. Master thesis (1996)Google Scholar
Copyright information
© Springer-Verlag GmbH Germany, part of Springer Nature 2018