Advertisement

Exponential decay of connection probabilities for subcritical Voronoi percolation in \(\mathbb {R}^d\)

  • Hugo Duminil-Copin
  • Aran Raoufi
  • Vincent Tassion
Article

Abstract

We prove that for Voronoi percolation on \(\mathbb {R}^d\) \((d\ge 2)\), there exists \(p_c=p_c(d)\in (0,1)\) such that
  • for \(p<p_c\), there exists \(c_p>0\) such that \(\mathbb {P}_p[0\text { connected to distance }n]\le \exp (-c_pn)\),

  • there exists \(c>0\) such that for \(p>p_c, \mathbb {P}_p[0\text { connected to infinity}]\ge c(p-p_c)\).

For dimension 2, this result offers a new way of showing that \(p_c(2)=1/2\). This paper belongs to a series of papers using the theory of algorithms to prove sharpness of the phase transition; see [10, 11].

Mathematics Subject Classification

60K35 82B21 82B43 

Notes

Acknowledgements

The authors are thankful to Asaf Nachmias for reading the manuscript and his helpful comments. This research was supported by the IDEX grant from Paris-Saclay, a grant from the Swiss FNS, and the NCCR SwissMAP.

References

  1. 1.
    Aizenman, M., Barsky, D.J.: Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108(3), 489–526 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aizenman, M., Barsky, D.J., Fernández, R.: The phase transition in a general class of Ising-type models is sharp. J. Stat. Phys. 47(3–4), 343–374 (1987)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ahlberg, D., Griffiths, S., Morris, R., Tassion, V.: Quenched Voronoi percolation. Adv. Math. 286, 889–911 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Beffara, V., Duminil-Copin, H.: The self-dual point of the two-dimensional random-cluster model is critical for \(q\ge 1\). Probab. Theory Relat. Fields 153(3–4), 511–542 (2012)CrossRefzbMATHGoogle Scholar
  5. 5.
    Broadbent, S.R., Hammersley, J.M.: Percolation processes. I. Crystals and mazes. Proc. Camb. Philos. Soc. 53, 629–641 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bollobás, B., Riordan, O.: The critical probability for random Voronoi percolation in the plane is 1/2. Probab. Theory Relat. Fields 136(3), 417–468 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bollobás, B., Riordan, O.: Percolation. Cambridge University Press, New York (2006)CrossRefzbMATHGoogle Scholar
  8. 8.
    Benjamini, I., Schramm, O.: Conformal invariance of Voronoi percolation. Commun. Math. Phys. 197(1), 75–107 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Duminil-Copin, H., Raoufi, A., Tassion, V.: A new computation of the critical point for the planar random-cluster model with \(q\ge 1\). Annales de l’Institut Henri Poincaré, Probabilités et Statistiques. Vol. 54. No. 1. Institut Henri Poincaré (2018)Google Scholar
  10. 10.
    Duminil-Copin, H., Raoufi, A., Tassion, V.: Sharpness of the phase transition for random-cluster and Potts models via decision trees. arXiv:1705.03104 (2017)
  11. 11.
    Duminil-Copin, H., Raoufi, A., Tassion, V.: Subcritical phase of \(d\)-dimensional Poisson-boolean percolation and its vacant set (in preparation) (2017)Google Scholar
  12. 12.
    Duminil-Copin, H., Tassion, V.: A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model. Commun. Math. Phys. 343(2), 725–745 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Friedgut, E., Kalai, G.: Every monotone graph property has a sharp threshold. Proc. Am. Math. Soc. 124(10), 2993–3002 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Menshikov, M.V.: Coincidence of critical points in percolation problems. Dokl. Akad. Nauk SSSR 288(6), 1308–1311 (1986)MathSciNetGoogle Scholar
  15. 15.
    Meester, R., Roy, R.: Continuum Percolation. Cambridge University Press, New York (2008)zbMATHGoogle Scholar
  16. 16.
    O’Donnell, R., Saks, M., Schramm, O., Servedio, R.: Every decision tree has an influential variable. In: FOCS (2005)Google Scholar
  17. 17.
    Tassion, V.: Crossing probabilities for Voronoi percolation. Ann. Probab. 44(5), 3385–3398 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Zvavitch, A.: The critical probability for Voronoi percolation. Master thesis (1996)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hugo Duminil-Copin
    • 1
    • 2
  • Aran Raoufi
    • 2
  • Vincent Tassion
    • 3
  1. 1.Université de GenèveGenevaSwitzerland
  2. 2.Institut des Hautes Études ScientifiquesBures-sur-YvetteFrance
  3. 3.ETH ZurichZurichSwitzerland

Personalised recommendations