Skip to main content
Log in

Conformal invariance in the FK-representation of the quantum Ising model and convergence of the interface to the \(\mathrm{SLE}_{16/3}\)

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We study the interface in the FK-representation of the 1D quantum Ising model and show that in the limit, it converges to the \(\mathrm{SLE}_{16/3}\) curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. A huge family of graphs containing classical regular graphs such as the square lattice, the hexagonal lattice and the triangular lattice. A theory of complex analysis has been developped on such graphs in [10, 21, 28].

References

  1. Björnberg, J.E., Grimmett, G.R.: The phase transition of the quantum Ising model is sharp. J. Stat. Phys. 136(2), 231–273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bobenko, A.I., Günther, F.: Discrete complex analysis on planar quad-graphs. arXiv preprint arXiv:1505.05673 (2015)

  3. Benoist, S., Hongler, C.: The scaling limit of critical Ising interfaces is cle (3). arXiv preprint arXiv:1604.06975 (2016)

  4. Björnberg, J.E.: Infrared bound and mean-field behaviour in the quantum Ising model. Commun. Math. Phys. 323(1), 329–366 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Björnberg, J.E.: Fermionic observables in the transverse Ising chain. arXiv preprint arXiv:1607.06484 (2016)

  6. Bobenko, A.I., Mercat, C., Suris, Y.B.: Linear and nonlinear theories of discrete analytic functions. Integrable structure and isomonodromic Green’s function. J. Reine Angew. Math. 583, 117–161 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bücking, U.: Approximation of conformal mappings by circle patterns. Geom. Dedicata 137, 163–197 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chelkak, D., Duminil-Copin, H., Hongler, C., Kemppainen, A., Smirnov, S.: Convergence of Ising interfaces to Schramm’s SLE curves. C. R. Math. Acad. Sci. Paris 352(2), 157–161 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chelkak, D., Hongler, C., Izyurov, K.: Conformal invariance of spin correlations in the planar Ising model. Ann. Math. (2) 181(3), 1087–1138 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chelkak, D., Smirnov, S.: Discrete complex analysis on isoradial graphs. Adv. Math. 228(3), 1590–1630 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chelkak, D., Smirnov, S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189(3), 515–580 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duminil-Copin, H.: Parafermionic observables and their applications to planar statistical physics models. Ensaios Matemáticos [Mathematical Surveys], vol. 25. Sociedade Brasileira de Matemática, Rio de Janeiro (2013)

    MATH  Google Scholar 

  13. Duminil-Copin, H., Hongler, C., Nolin, P.: Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model. Commun. Pure Appl. Math. 64(9), 1165–1198 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duminil-Copin, H., Li, J.-H., Manolescu, I.: Universality for random-cluster model on isoradial graphs. In preparation (2017). https://arxiv.org/abs/1711.02338

  15. Duminil-Copin, H., Smirnov, S.: Conformal invariance of lattice models. In: Probability and Statistical Physics in Two and More Dimensions, vol. 15. Clay Math. Proc. Am. Math. Soc., Providence, RI, pp. 213–276 (2012)

  16. Duffin, R.J.: Basic properties of discrete analytic functions. Duke Math. J. 23, 335–363 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  17. Duffin, R.J.: Potential theory on a rhombic lattice. J. Comb. Theory 5, 258–272 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grimmett, G.R., Osborne, T.J., Scudo, P.F.: Entanglement in the quantum Ising model. J. Stat. Phys. 131(2), 305–339 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hongler, C., Smirnov, S.: The energy density in the planar Ising model. Acta Math. 211(2), 191–225 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ioffe, D.: Stochastic geometry of classical and quantum Ising models. In: Methods of Contemporary Mathematical Statistical Physics. Lecture Notes in Mathematics, vol. 1970. Springer, Berlin, pp. 87–127 (2009)

  21. Kenyon, R.: The Laplacian and Dirac operators on critical planar graphs. Invent. Math. 150(2), 409–439 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kemppainen, A., Smirnov, S.: Random curves, scaling limits and Loewner evolutions. arXiv preprint arXiv:1212.6215 (2012)

  23. Kemppainen, A., Smirnov, S.: Conformal invariance of boundary touching loops of FK Ising model. arXiv preprint arXiv:1509.08858 (2015)

  24. Kemppainen, A., Smirnov, S.: Conformal invariance in random cluster models. II. Full scaling limit as a branching SLE. arXiv preprint arXiv:1609.08527 (2016)

  25. Kurowski, G.J.: Semi-discrete analytic functions. Trans. Am. Math. Soc. 106, 1–18 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kurowski, G.J.: On the convergence of semi-discrete analytic functions. Pac. J. Math. 14, 199–207 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kurowski, G.J.: A convolution product for semi-discrete analytic functions. J. Math. Anal. Appl. 20, 421–441 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mercat, C.: Discrete Riemann surfaces and the Ising model. Commun. Math. Phys. 218(1), 177–216 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pfeuty, P.: The one-dimensional Ising model with a transverse field. Ann. Phys. 57(1), 79–90 (1970)

    Article  Google Scholar 

  30. Schramm, O.: Conformally invariant scaling limits: an overview and a collection of problems. In: International Congress of Mathematicians. vol. I. Eur. Math. Soc., Zürich, pp. 513–543 (2007)

  31. Smirnov, S.: Towards conformal invariance of 2D lattice models. In: International Congress of Mathematicians. vol. II. Eur. Math. Soc., Zürich, pp. 1421–1451 (2006)

  32. Smirnov, S.: Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. Math. (2) 172(2), 1435–1467 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by the NCCR SwissMAP, the ERC AG COMPASP, and the Swiss NSF. The author is thankful to his advisers Hugo Duminil-Copin and Stanislav Smirnov for their help and constant support during his Ph.D. He is also grateful to the referee for his careful reading and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jhih-Huang Li.

Appendix: Computation of residues

Appendix: Computation of residues

For a non-negative integer k and an integer m, define the following meromorphic function on \(\mathbb {C}\),

$$\begin{aligned} g_{k, m} (z) := \frac{1}{z} \left( \frac{1}{z+1} + \frac{1}{z-1} \right) ^k \left( \frac{z+1}{z-1} \right) ^{2m} = \frac{2^k z^{k-1}}{(z-1)^{k+2m} (z+1)^{k-2m}}. \end{aligned}$$

We notice that the possible singularities are at 0, 1 and \(-1\).

Lemma A.1

When \(k=0\), we have \({{\mathrm{\mathrm{Res}}}}(g_{k, m}, 1) = {{\mathrm{\mathrm{Res}}}}(g_{k, m}, -1) = 0\) for all integer m.

Proof

We fix \(k=0\). When \(m = 0\), the result is trivial. For \(m \geqslant 1\), the function \(g_{k, m}\) does not have any pole at \(-1\), so it is clear that \({{\mathrm{\mathrm{Res}}}}(g_{k, m}, -1) = 0\). The residue of \(g_{k, m}(z)\) at \(z = 1\) is the residue of \(g_{k, m}(y+1)\) at \(y = 0\). We have

$$\begin{aligned} g_{k, m} (y+1)&= \frac{1}{y+1} \left( 1 + \frac{2}{y} \right) ^{2m} \\&= \left[ \sum _{k \geqslant 0} (-y)^k \right] \left[ \sum _{l=0}^{2m} {2m \atopwithdelims ()l} \left( \frac{2}{y} \right) ^l \right] , \end{aligned}$$

where the coefficient of \(\frac{1}{y}\) is given by

$$\begin{aligned} \sum _{l=1}^{2m} {2m \atopwithdelims ()l} 2^l (-1)^{l-1} = - [(1-2)^{2m} - 1] = 0. \end{aligned}$$

When m is negative, the proof is similar. \(\square \)

Lemma A.2

For \(k \geqslant 1\), we have \({{\mathrm{\mathrm{Res}}}}(g_{k, m}, 1) + {{\mathrm{\mathrm{Res}}}}(g_{k, m}, -1) = 0\).

Proof

When \(k \geqslant 1\), the singularity at 0 is removable. We observe that \(|g_{k, m} (z)|\) behaves like \(|z|^{-k-1} \leqslant |z|^{-2}\) when |z| is large, giving

$$\begin{aligned} \lim _{R \rightarrow \infty } \frac{1}{2 \pi {{\mathrm{\mathrm{i}}}}} \int _{\partial B(0, R)} g_{k, m} (z) \mathrm{d}z = 0. \end{aligned}$$

Moreover, when \(R > 1\), we have

$$\begin{aligned} \frac{1}{2 \pi {{\mathrm{\mathrm{i}}}}} \int _{\partial B(0, R)} g_{k, m} (z) \mathrm{d}z = {{\mathrm{\mathrm{Res}}}}(g_{k, m}, -1) + {{\mathrm{\mathrm{Res}}}}(g_{k, m}, 1). \end{aligned}$$

Thus, we get the desired result. \(\square \)

Lemma A.3

For \(k \geqslant 1\) and \(k \leqslant 2 |m|\), \({{\mathrm{\mathrm{Res}}}}(g_{k, m}, 1) = {{\mathrm{\mathrm{Res}}}}(g_{k, m}, -1) = 0\).

Proof

The previous lemma tells us that it is enough to show that the residue is zero at either 1 or \(-1\). If m is positive, we notice that \(g_{k, m}(z)\) does not have any pole at \(-1\), thus the residue at \(-1\) is zero. If m is negative, the residue at 1 is zero. \(\square \)

Lemma A.4

More generally, for all \(k \in 2 \mathbb {N}\),

$$\begin{aligned} {{\mathrm{\mathrm{Res}}}}(g_{k, m}, 1) = {{\mathrm{\mathrm{Res}}}}(g_{k, m}, -1) = 0. \end{aligned}$$

Proof

Assume that \(k = 2l > m \geqslant 0\) for a positive integer l. Look at the residue of \(g_{k, m} (z)\) around \(z = 1\) is equivalent to looking at the residue of \(g_{k, m} (y+1)\) around \(y=0\),

$$\begin{aligned} {{\mathrm{\mathrm{Res}}}}(g_{k, m}(z), z=1) = {{\mathrm{\mathrm{Res}}}}(g_{k, m}(y+1), y=0). \end{aligned}$$

We have the following equivalent relations

$$\begin{aligned}&{{\mathrm{\mathrm{Res}}}}(g_{2l, m}(y+1), y=0) = 0 \nonumber \\&\quad \Leftrightarrow {{\mathrm{\mathrm{Res}}}}\left( \frac{(y+1)^{2l-1}}{y^{2l+2m}(y+2)^{2l-2m}}, y=0 \right) = 0 \nonumber \\&\quad \Leftrightarrow \frac{(1+y)^{2l-1}}{(1+\frac{y}{2})^{2l-2m}} [y^{2l+2m-1}]= 0 \end{aligned}$$
(A.1)

where the notation \(R(y) [y^k]\) gives the coefficient of \(y^k\) in the Laurent series of R(y).

We expand the rational fraction to evaluate this coefficient by applying the three following identities,

$$\begin{aligned} {{2m-2l \atopwithdelims ()2m+p}}&= (-1)^{2m+p} {{2l+p-1 \atopwithdelims ()2m+p}} \end{aligned}$$
(A.2)
$$\begin{aligned} {{2l+p-1 \atopwithdelims ()2m+p}}&= \sum _{q=0}^{2l-1} {{p \atopwithdelims ()q}} {{2l-1 \atopwithdelims ()2m+p-q}}, \end{aligned}$$
(A.3)
$$\begin{aligned} \sum _{k=0}^n {{n \atopwithdelims ()k}} {{ k \atopwithdelims ()r}} (-x)^k&= (-x)^r (1-x)^{n-r} {{n \atopwithdelims ()r}}. \end{aligned}$$
(A.4)

Equation (A.2) comes from the general definition of binomial coefficients, and in our case, we have \(2m-2l < 0\). Equation (A.3) is an easy combinatorial identity and Eq. (A.4) a simple expansion. Then, the left-hand side of Eq. (A.1) equals

$$\begin{aligned}&\sum _{p=0}^{2l-1} {{2l-1 \atopwithdelims ()p}} \left( \frac{1}{2} \right) ^{2l+2m-1-p} {{2m-2l \atopwithdelims ()2l+2m-1-p}} \\ (p \leadsto 2l-1-p)&\quad = \sum _{p=0}^{2l-1} {{2l-1 \atopwithdelims ()p}} \left( \frac{1}{2} \right) ^{2m+p} {{2m-2l \atopwithdelims ()2m+p}} \\&\quad = \sum _{p=0}^{2l-1} {{2l-1 \atopwithdelims ()p}} \left( -\frac{1}{2} \right) ^{2m+p} {{2l+p-1 \atopwithdelims ()2m+p}} \\ (\text{ Equation } ~(A.3))&\quad = \sum _{p=0}^{2l-1} {{2l-1 \atopwithdelims ()p}} \left( -\frac{1}{2} \right) ^{2m+p} \sum _{q=0}^{2l-1} {{p \atopwithdelims ()q}} {{2l-1 \atopwithdelims ()2m+p-q}} \\ (q \leadsto p-q)&\quad = \sum _{p=0}^{2l-1} {{2l-1 \atopwithdelims ()p}} \left( -\frac{1}{2} \right) ^{2m+p} \sum _{q=0}^{2l-1} {{p \atopwithdelims ()q}} {{2l-1 \atopwithdelims ()2m+q}} \\&\quad = \left( \frac{1}{2} \right) ^{2m} \sum _{q=0}^{2l-1} {{2l-1 \atopwithdelims ()2m+q}} \sum _{p=0}^{2l-1} {{2l-1 \atopwithdelims ()p}} {{p \atopwithdelims ()q}} \left( -\frac{1}{2} \right) ^p \\ (\text{ Equation } ~(A.4))&\quad = \left( \frac{1}{2} \right) ^{2m} \sum _{q=0}^{2l-1} {{2l-1 \atopwithdelims ()2m+q}} \left( -\frac{1}{2} \right) ^q \left( \frac{1}{2} \right) ^{2l-1-q} {{2l-1 \atopwithdelims ()q}} \\&\quad = \left( \frac{1}{2} \right) ^{2m+2l-1} \sum _{q=0}^{2l-1} (-1)^q {{2l-1 \atopwithdelims ()2m+q}} {{2l-1 \atopwithdelims ()2l-1-q}} =0 \end{aligned}$$

where the sum in the last line is the coefficient in front of \(x^{2m+2l-1}\) in \((1-x)^{2l-1}(1+x)^{2l-1} = (1-x^2)^{2l-1}\), which is zero because the polynomial only contains monomials of even degree. \(\square \)

Proposition A.5

For \(\zeta = m + {{\mathrm{\mathrm{i}}}}t \in \mathbb {L}_1\) with \(m \in \frac{1}{2} \mathbb {Z}\) and \(t \in \mathbb {R}\), let \(f_\zeta \) as defined in (3.22). Consider C the path defined in Proposition 3.18. Then,

$$\begin{aligned} \int _C f_\zeta (z) \mathrm{d}z = 0. \end{aligned}$$

Proof

We will expand the exponential into series and show that this integral is zero for all terms. We can do this because the series converges uniformly on all compacts to the exponential function. Therefore, it makes sense to exchange the integral and the series. After expanding, we get

$$\begin{aligned} f_\zeta (z) = \sum _{k \geqslant 0} \frac{(2 {{\mathrm{\mathrm{i}}}}t)^k}{k!} g_{k, m} (z) \end{aligned}$$

and the residue theorem along with Lemmas A.1 and A.2 allows us to conclude. \(\square \)

The previous proposition is important because it shows that the Green’s function as defined by (3.23) does not depend on the lift of the logarithm.

Proposition A.6

Around \(\zeta = m \in \mathbb {Z}\backslash \{ 0 \}\), the function G is \(\mathcal {C}^{2|m|}\).

Proof

To show this, we need to check that for all \(k \leqslant 2 |m|\), we have

$$\begin{aligned} \int _C g_{k, m}(z) \ln _1(z) \mathrm{d}z = \int _C g_{k, m}(z) \ln _2(z) \mathrm{d}z \end{aligned}$$

where \(\ln _i\) is chosen such that \(\ln _i(1) - \ln _i(-1) = (-1)^i {{\mathrm{\mathrm{i}}}}\pi \). Here, \(\ln _1\) corresponds to the logarithm chosen in the upper half-plan and \(\ln _2\) in the lower half-plane. From Proposition A.5, we can fix a lift of the logarithm such that \(\ln _1 - \ln _2\) is non zero around 1 and \(-1\), for example \(\ln _1 (1) = 2 {{\mathrm{\mathrm{i}}}}\pi \), \(\ln _1 (-1) = 3 {{\mathrm{\mathrm{i}}}}\pi \), \(\ln _2 (1) = 0\) and \(\ln _2(-1) = -{{\mathrm{\mathrm{i}}}}\pi \).

Let \(I_1\) be the integral on the left-hand side and \(I_2\) be the one on the right-hand side. Since \(\ln _1 - \ln _2\) is non zero at 1 and \(-1\), we can write

$$\begin{aligned} I_1 - I_2&= 2 {{\mathrm{\mathrm{i}}}}\pi [ 2 {{\mathrm{\mathrm{i}}}}\pi {{\mathrm{\mathrm{Res}}}}(g_{k, m} (z), z = 1) + 4 {{\mathrm{\mathrm{i}}}}\pi {{\mathrm{\mathrm{Res}}}}(g_{k, m} (z), z = -1) ] = 0 \end{aligned}$$

due to Lemma A.3. \(\square \)

Proposition A.6 provides us with the regularity of Green’s function; in particular, the second condition giving in Sect. 3.4.1 is satisfied. This comes to complete the proof of Proposition 3.18.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JH. Conformal invariance in the FK-representation of the quantum Ising model and convergence of the interface to the \(\mathrm{SLE}_{16/3}\). Probab. Theory Relat. Fields 173, 87–156 (2019). https://doi.org/10.1007/s00440-018-0831-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-018-0831-3

Mathematics Subject Classification

Navigation