Advertisement

Probability Theory and Related Fields

, Volume 172, Issue 3–4, pp 1121–1179 | Cite as

Lipschitz embeddings of random fields

  • Riddhipratim BasuEmail author
  • Vladas Sidoravicius
  • Allan Sly
Article
  • 225 Downloads

Abstract

We consider the problem of embedding one i.i.d. collection of Bernoulli random variables indexed by \({\mathbb {Z}}^d\) into an independent copy in an injective M-Lipschitz manner. For the case \(d=1\), it was shown in Basu and Sly (Probab Theory Relat Fields 159:721–775, 2014) to be possible almost surely for sufficiently large M. In this paper we provide a multi-scale argument extending this result to higher dimensions.

Mathematics Subject Classification

60K35 

Notes

Acknowledgements

This work was completed when R. B. was a graduate student at the Department of Statistics at UC Berkeley and the result in this paper appeared in Chapter 4 of his Ph.D. dissertation at UC Berkeley: Lipschitz Embeddings of Random Objects and Related Topics, 2015. R. B. gratefully acknowledges the support of UC Berkeley graduate fellowship. V. S. was supported by CNPq grant Bolsa de Produtividade. A. S. was supported by NSF grant DMS-1352013, and a Simons Investigator grant. We also thank an anonymous referee for many useful comments and suggestions that helped improve both the technical and editorial quality of the paper.

References

  1. 1.
    Abért, M.: Asymptotic group theory questions. http://www.math.uchicago.edu/~abert/research/asymptotic.html (2008)
  2. 2.
    Balister, P.N., Bollobás, B., Stacey, A.M.: Dependent percolation in two dimensions. Probab. Theory Relat. Fields 117, 495–513 (2000)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Basu, R., Sidoravicius, V., Sly, A.: Bi-Lipschitz expansion of measurable sets. Preprint, arXiv:1411.5673
  4. 4.
    Basu, R., Sidoravicius, V., Sly, A.: Scheduling of non-colliding random walks. Preprint, arXiv:1411.4041
  5. 5.
    Basu, R., Sly, A.: Lipschitz embeddings of random sequences. Probab. Theory Relat. Fields 159, 721–775 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Benjamini, I., Kesten, H.: Percolation of arbitrary words in \(\{0,1\}^{{\rm N}}\). Ann. Probab. 23(3), 1024–1060 (1995)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Coppersmith, D., Tetali, P., Winkler, P.: Collisions among random walks on a graph. SIAM J. Discrete Math. 6, 363 (1993)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dirr, N., Dondl, P.W., Grimmett, G.R., Holroyd, A.E., Scheutzow, M.: Lipschitz percolation. Electron. Commun. Probab. 15, 14–21 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gács, P.: Clairvoyant embedding in one dimension. Random Struct. Alg. 47, 520–560 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Grimmett, G.: Three problems for the clairvoyant demon. Arxiv preprint arXiv:0903.4749 (2009)
  11. 11.
    Grimmett, G.R., Holroyd, A.E.: Geometry of Lipschitz percolation. Ann. Inst. H. Poincaré Probab. Statist. 48(2), 309–326 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Grimmett, G.R., Holroyd, A.E.: Plaquettes, spheres, and entanglement. Electron. J. Probab. 15, 1415–1428 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Grimmett, G.R., Holroyd, A.E.: Lattice embeddings in percolation. Ann. Probab. 40(1), 146–161 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Grimmett, G.R., Liggett, T.M., Richthammer, T.: Percolation of arbitrary words in one dimension. Random Struct. Algorithms 37(1), 85–99 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hilrio, M.R., de Lima, B.N.B., Nolin, P., Sidoravicius, V.: Embedding binary sequences into bernoulli site percolation on. Stoch. Process. Appl. 124(12), 4171–4181 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Holroyd, A.E., Martin, J.: Stochastic domination and comb percolation. Arxiv preprint arXiv:1201.6373 (2012)
  17. 17.
    Kesten, H., Sidoravicius, V., Zhang, Y.: Almost all words are seen in critical site percolation on the triangular lattice. Electron. J. Probab. 3, 1–75 (1998)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kesten, H., Sidoravicius, V., Zhang, Y.: Percolation of arbitrary words on the close-packed graph of \(\mathbb{Z}^2\). Electron. J. Probab. 6(4), 27 (2001). (electronic)zbMATHGoogle Scholar
  19. 19.
    Peled, R.: On rough isometries of poisson processes on the line. Ann. Appl. Probab. 20, 462–494 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Winkler, P.: Dependent percolation and colliding random walks. Random Struct. Algorithms 16(1), 58–84 (2000)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Riddhipratim Basu
    • 1
    Email author
  • Vladas Sidoravicius
    • 2
    • 3
  • Allan Sly
    • 4
  1. 1.International Centre for Theoretical SciencesTata Institute of Fundamental ResearchBangaloreIndia
  2. 2.Courant Institute of Mathematical SciencesNew YorkUSA
  3. 3.NYU-ECNU Institute of Mathematical Sciences at NYU ShanghaiShanghaiChina
  4. 4.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations