Interlacing adjacent levels of \(\beta \)–Jacobi corners processes

Abstract

We study the asymptotics of the global fluctuations for the difference between two adjacent levels in the \(\beta \)–Jacobi corners process (multilevel and general \(\beta \) extension of the classical Jacobi ensemble of random matrices). The limit is identified with the derivative of the 2d Gaussian free field. Our main tools are integral forms for the (Macdonald-type) difference operators originating from the shuffle algebra.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices, vol. 118. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  2. 2.

    Anderson, G.W.: A short proof of Selberg’s generalized beta formula. Forum Math. 3(4), 415–418 (1991)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Bauerschmidt, R., Bourgade, P., Nikula, M., Yau, H.T.: The two-dimensional Coulomb plasma: quasi-free approximation and central limit theorem (2016). arXiv:1609.08582

  4. 4.

    Borodin, A., Corwin, I.: Macdonald processes. Probab. Theory Relat. Fields 158(1–2), 225–400 (2014). arXiv:1111.4408

    MathSciNet  Article  Google Scholar 

  5. 5.

    Borodin, A., Corwin, I., Gorin, V., Shakirov, S.: Observables of Macdonald processes. Trans. Am. Math. Soc. 368(3), 1517–1558 (2016). arXiv:1111.4408

    MathSciNet  Article  Google Scholar 

  6. 6.

    Borodin, A., Gorin, V.: Lectures on integrable probability. In: Probability and Statistical Physics in St. Petersburg, Proceedings of Symposia in Pure Mathematics, vol. 91, pp. 155–214 (2012)

  7. 7.

    Borodin, A., Gorin, V.: General \(\beta \)-Jacobi corners process and the Gaussian free field. Commun. Pure Appl. Math. 68(10), 1774–1844 (2015). arXiv:1305.3627

    MathSciNet  Article  Google Scholar 

  8. 8.

    Borodin, A.: CLT for spectra of submatrices of Wigner random matrices. Mosc. Math. J. 14(1), 29–38 (2014). arXiv:1010.0898

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Bufetov, A.: Kerov’s interlacing sequences and random matrices. J. Math. Phys. 54(11), 113302 (2013). arXiv:1211.1507

    MathSciNet  Article  Google Scholar 

  10. 10.

    Conlon, J.G., Spencer, T.: A strong central limit theorem for a class of random surfaces. Commun. Math. Phys. 325(1), 1–15 (2014). arXiv:1105.2814

    MathSciNet  Article  Google Scholar 

  11. 11.

    Dixon, A.L.: Generalization of Legendre’s formula. Proc. Lond. Math. Soc. 2(1), 206–224 (1905)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Dumitriu, I., Paquette, E.: Spectra of overlapping Wishart matrices and the Gaussian free field (2014). arXiv:1410.7268

  13. 13.

    Dubédat, J.: SLE and the free field: partition functions and couplings. J. Am. Math. Soc. 22(4), 995–1054 (2009). arXiv:0712.3018

    MathSciNet  Article  Google Scholar 

  14. 14.

    Erdős, L., Schröder, D.:Fluctuations of rectangular Young diagrams of interlacing Wigner eigenvalues. Int. Math. Res. Not. rnw330 (2017). arXiv:1608.05163

  15. 15.

    Faris, W.G.: Combinatorics and cluster expansions. Prob. Surv. 7, 157–206 (2010)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Feigin, B., Hashizume, K., Hoshino, A., Shiraishi, J., Yanagida, S.: A commutative algebra on degenerate \(\mathbb{CP}^1\) and Macdonald polynomials. J. Math. Phys. 50(9), 095215 (2009). arXiv:0904.2291

    MathSciNet  Article  Google Scholar 

  17. 17.

    Fyodorov, Y., Le Doussal, P.: Moments of the position of the maximum for GUE characteristic polynomials and for log-correlated Gaussian processes. J. Stat. Phys. 164, 1–51 (2016). arXiv:1511.04258

    MathSciNet  Article  Google Scholar 

  18. 18.

    Forrester, P.: Log-Gases and Random Matrices. London Mathematical Society Monographs. Princeton University Press, Princeton (2010)

    Google Scholar 

  19. 19.

    Ganguly, S., Pal, S.: The random transposition dynamics on random regular graphs and the Gaussian free field (2014). arXiv:1409.7766

  20. 20.

    Ivanov, V., Olshanski, G.: Kerov’s Central Limit Theorem for the Plancherel Measure on Young Diagrams, pp. 93–151. Springer, Dordrecht (2002). arXiv:math/0304010

    Google Scholar 

  21. 21.

    Johnson, T., Pal, S.: Cycles and eigenvalues of sequentially growing random regular graphs. Ann. Probab. 42(4), 1396–1437 (2014). arXiv:1203.1113

    MathSciNet  Article  Google Scholar 

  22. 22.

    Kerov, S.: Transition probabilities for continual Young diagrams and the Markov moment problem. Funct. Anal. Appl. 27(2), 104–117 (1993)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Kerov, S.: Asymptotics of the separation of roots of orthogonal polynomials. St. Petersburg Math. J. 5, 925–941 (1994)

    MathSciNet  Google Scholar 

  24. 24.

    Kerov, S.: Interlacing measures. Am. Math. Soc. Transl. 5, 35–84 (1998)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs, 2nd edn. Oxford University Press, Oxford (1995)

    Google Scholar 

  26. 26.

    Negut, A.: Operators on symmetric polynomials (2013). arXiv:1310.3515

  27. 27.

    Negut, A.: The shuffle algebra revisited. Int. Math. Res. Not. IMRN 2014(22), 6242–6275 (2014). arXiv:1209.3349

    MathSciNet  Article  Google Scholar 

  28. 28.

    Pathria, R.K.: Statistical Mechanics, 2nd edn. Butterworth-Heinemann, Oxford (1996)

    Google Scholar 

  29. 29.

    Pastur, L., Shcherbina, M.: Eigenvalue Distribution of Large Random Matrices, vol. 171. American Mathematical Society, Providence (2011)

    Google Scholar 

  30. 30.

    Peccati, G., Taqqu, M.S.: Wiener Chaos: Moments, Cumulants and Diagrams: A Survey with Computer Implementation, 1st edn. Bocconi. and Springer Series. Springer, Italia Srl (2011)

    Google Scholar 

  31. 31.

    Sheffield, S.: Gaussian free fields for mathematicians. Probab. Theory Relat. Fields 139(3–4), 521–541 (2007). arXiv:math/0312099

    MathSciNet  Article  Google Scholar 

  32. 32.

    Sodin, S.: Fluctuations of interlacing sequences (2016). arXiv:1610.02690

  33. 33.

    Sun, Y.: Matrix models for multilevel Heckman–Opdam and multivariate Bessel measures (2016). arXiv:1609.09096

  34. 34.

    Szegő, G.: Orthogonal Polynomials. Colloquium Publications Colloquium Publications, 4th edn. American Mathematical Society, Providence (1939)

    Google Scholar 

  35. 35.

    Werner, W.: Topics on the two-dimensional Gaussian free field (2014), lecture notes. https://people.math.ethz.ch/~wewerner/GFFln.pdf

Download references

Acknowledgements

The authors would like to thank Alexei Borodin and Alexey Bufetov for helpful discussions. We are very grateful to the two anonymous referees, whose feedback led to many important improvements in the text. VG was partially supported by the NSF Grants DMS-1407562, DMS-1664619, and by the Sloan Research Fellowship. LZ was partially supported by Undergraduate Research Opportunity Program (UROP) in Massachusetts Institute of Technology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lingfu Zhang.

Appendices

Appendices

Dimension reduction identities

In this appendix we discuss integral identities, which are widely used in proofs in the main text. A special case (\(m=1\)) of the following result was communicated to the authors by Alexei Borodin, and we present our own proof here.

For any positive integer n, let \(\sigma _n\) denote the cycle \((12\cdots n)\), and let \(S^{cyc}(n)\) denote the n-element subgroup of the symmetric group spanned by \(\sigma _n\).

Theorem A.1

Let \(n\ge 2\), and \(f_1, \ldots , f_n : \mathbb {C} \rightarrow \mathbb {C}\) be meromorphic with possible poles at \(\{\mathfrak {p}_1, \ldots , \mathfrak {p}_m \}\). Then we have the identity

$$\begin{aligned}&\sum _{\sigma \in S^{cyc}(n)} \frac{1}{(2\pi {\mathbf {i}})^n} \oint \cdots \oint \frac{f_{\sigma (1)}(u_{1}) \cdots f_{\sigma (n)}(u_{n}) }{(u_2 - u_1) \cdots (u_n - u_{n-1})} du_1\cdots du_n\nonumber \\&\quad \quad = \frac{1}{2\pi {\mathbf {i}}} \oint f_1(u)\cdots f_n(u) du, \end{aligned}$$
(A.1)

where the contours in both sides are positively oriented, enclosing \(\{\mathfrak {p}_1, \ldots , \mathfrak {p}_m \}\), and for the left hand side we require \(|u_1| \ll \cdots \ll |u_n|\).

Proof

Let \(\mathfrak {C}_1, \ldots , \mathfrak {C}_{2n-1}\) be closed paths around \(\{\mathfrak {p}_1, \ldots , \mathfrak {p}_m \}\), and each \(\mathfrak {C}_i\) is inside \(\mathfrak {C}_{i+1}\), \(1\le i \le 2n-2\). Also, to simplify notations, set \(f_{n+t} = f_t\) and \(u_{n+t} = u_t\) for any \(1 \le t \le n-1\). Then the left hand side of (A.1) can be written as

$$\begin{aligned} \sum _{t=0}^{n-1} \frac{1}{(2\pi {\mathbf {i}})^n} \oint _{\mathfrak {C}_{1}} \cdots \oint _{\mathfrak {C}_{n}} \frac{f_{1+t}(u_1) \cdots f_{n+t}(u_n) }{(u_2 - u_1) \cdots (u_n- u_{n-1})} du_n \cdots du_1. \end{aligned}$$
(A.2)

When \(n=2\), we have

$$\begin{aligned}&\frac{1}{(2\pi {\mathbf {i}})^2} \oint _{\mathfrak {C}_{1}} \oint _{\mathfrak {C}_{2}} \frac{f_1(u_1) f_2(u_2)}{u_2 - u_1} du_2 du_1 + \frac{1}{(2\pi {\mathbf {i}})^2} \oint _{\mathfrak {C}_{1}} \oint _{\mathfrak {C}_{2}} \frac{f_2(u_1) f_1(u_2)}{u_2 - u_1} du_2 du_1 \nonumber \\&\quad = \frac{1}{(2\pi {\mathbf {i}})^2} \oint _{\mathfrak {C}_{1}} \oint _{\mathfrak {C}_{2}} \frac{f_1(u_1) f_2(u_2)}{u_2 - u_1} du_2 du_1 + \frac{1}{(2\pi {\mathbf {i}})^2} \oint _{\mathfrak {C}_{3}} \oint _{\mathfrak {C}_{2}} \frac{f_1(u_1) f_2(u_2)}{u_1 - u_2} du_2 du_1 \nonumber \\&\quad = \frac{1}{(2\pi {\mathbf {i}})^2} \oint _{\mathfrak {C}_{3} - \mathfrak {C}_{1}} \oint _{\mathfrak {C}_{2}} \frac{f_1(u_1) f_2(u_2)}{u_1 - u_2} du_2 du_1, \end{aligned}$$
(A.3)

where \(\oint _{\mathfrak {C}_{3} - \mathfrak {C}_{1}}\) is a notation for the difference of integrals over \(\mathfrak {C}_3\) and \(\mathfrak {C}_1\). Further, (A.3) equals to

$$\begin{aligned} \frac{1}{2\pi {\mathbf {i}}} \oint _{\mathfrak {C}_{2}} f_1(u) f_2(u) du, \end{aligned}$$
(A.4)

since as a function of \(u_1\), \(\frac{f_1(u_1) f_2(u_2)}{u_1 - u_2} \) has a single pole at \(u_2\) between \(\mathfrak {C}_{3}\) and \(\mathfrak {C}_{1}\); and the residue at this pole equals \(f_1(u_2)f_2(u_2)\). This proves the case of \(n=2\).

When \(n\ge 3\), we argue by induction and assume that Theorem A.1 is true for \(n-1\). For any \(1 \le t \le n-1\), we have that

$$\begin{aligned}&\frac{1}{(2\pi {\mathbf {i}})^n} \oint _{\mathfrak {C}_{1}} \cdots \oint _{\mathfrak {C}_{n}} \frac{f_{1+t}(u_1) \cdots f_{n+t}(u_n) }{(u_2 - u_1) \cdots (u_n- u_{n-1})} du_n \cdots du_1 \nonumber \\&\quad = \frac{1}{(2\pi {\mathbf {i}})^n} \oint _{\mathfrak {C}_{1+t}} \cdots \oint _{\mathfrak {C}_{n+t}} \frac{f_{1}(u_1) \cdots f_{n}(u_n) }{(u_{2+t} - u_{1+t}) \cdots (u_{n+t}- u_{n-1+t})} du_{n+t} \cdots du_{1+t} \nonumber \\&\quad = \frac{1}{(2\pi {\mathbf {i}})^n} \oint _{\mathfrak {C}_{n+1}} \cdots \oint _{\mathfrak {C}_{n+t}} \oint _{\mathfrak {C}_{t+1}} \cdots \oint _{\mathfrak {C}_{n}}\nonumber \\&\quad \quad \times \frac{f_{1}(u_1) \cdots f_{n}(u_n) }{(u_{2+t} - u_{1+t}) \cdots (u_{n+t}- u_{n-1+t})} du_{n} \cdots du_{1}. \end{aligned}$$
(A.5)

Now we can move the contours of \(u_1, \ldots , u_t\) from \(\mathfrak {C}_{n+1}, \ldots , \mathfrak {C}_{n+t}\) to \(\mathfrak {C}_{1}, \ldots , \mathfrak {C}_{t}\), respectively. We move the contours one by one starting from \(u_1\), and each move is across \(\mathfrak {C}_{t+1}, \ldots , \mathfrak {C}_{n}\). For \(u_1 (= u_{n+1})\), the only pole between \(\mathfrak {C}_{n+1}\) and \(\mathfrak {C}_{1}\) is \(u_n\); for any \(u_i\), \(1 < i \le t\), there is no pole between \(\mathfrak {C}_{n+i}\) and \(\mathfrak {C}_{i}\). Thus we have that

$$\begin{aligned}&\frac{1}{(2\pi {\mathbf {i}})^n} \oint _{\mathfrak {C}_{n+1}} \cdots \oint _{\mathfrak {C}_{n+t}} \oint _{\mathfrak {C}_{t+1}} \cdots \oint _{\mathfrak {C}_{n}} \frac{f_{1}(u_1) \cdots f_{n}(u_n) }{(u_{2+t} - u_{1+t}) \cdots (u_{n+t}- u_{n-1+t})} du_{n} \cdots du_{1} \nonumber \\&\quad = \frac{1}{(2\pi {\mathbf {i}})^n} \oint _{\mathfrak {C}_{1}} \cdots \oint _{\mathfrak {C}_{n}} \frac{f_{1}(u_1) \cdots f_{n}(u_n) }{(u_{2+t} - u_{1+t}) \cdots (u_{n+t}- u_{n-1+t})} du_{n} \cdots du_{1} \nonumber \\&\quad \quad + \frac{1}{(2\pi {\mathbf {i}})^{n-1}} \oint _{\mathfrak {C}_{1}} \cdots \oint _{\mathfrak {C}_{n-1}}\nonumber \\&\quad \quad \times \frac{f_{1+t}(u_1) \cdots f_{n}(u_{n-t}) f_{n+1}(u_{n-t}) \cdots f_{n+t}(u_{n-1}) }{(u_2 - u_1) \cdots (u_{n-1}- u_{n-2})} du_{n-1} \cdots du_1. \end{aligned}$$
(A.6)

Notice that (taking into account that \(u_{n+t} = u_t\))

$$\begin{aligned} \sum _{t=0}^{n-1} \frac{f_{1}(u_1) \cdots f_{n}(u_n) }{(u_{2+t} - u_{1+t}) \cdots (u_{n+t}- u_{n-1+t})} = 0, \end{aligned}$$
(A.7)

and by the induction assumption (applied to \(f_2, \ldots , f_{n-1}, f_n f_1\)), we have that

$$\begin{aligned}&\sum _{t=0}^{n-1} \frac{1}{(2\pi {\mathbf {i}})^n} \oint _{\mathfrak {C}_{1}} \cdots \oint _{\mathfrak {C}_{n}} \frac{f_{1+t}(u_1) \cdots f_{n+t}(u_n) }{(u_2 - u_1) \cdots (u_n- u_{n-1})} du_n \cdots du_1 \nonumber \\&\quad = \sum _{t=1}^{n-1} \frac{1}{(2\pi {\mathbf {i}})^{n-1}} \oint _{\mathfrak {C}_{1}} \cdots \oint _{\mathfrak {C}_{n-1}}\nonumber \\&\quad \quad \times \frac{f_{1+t}(u_1) \cdots f_{n}(u_{n-t}) f_{n+1}(u_{n-t}) \cdots f_{n+t}(u_{n-1}) }{(u_2 - u_1) \cdots (u_{n-1}- u_{n-2})} du_{n-1} \cdots du_1 \nonumber \\&\quad = \frac{1}{2\pi {\mathbf {i}}} \oint f_1(u)\cdots f_n(u) du. \end{aligned}$$
(A.8)

\(\square \)

Corollary A.2

Let s be a positive integer. Let f, \(g_1, \ldots , g_s\) be meromorphic functions with possible poles at \(\{\mathfrak {p}_1, \ldots , \mathfrak {p}_m \}\). Then for \(n\ge 2\),

$$\begin{aligned}&\frac{1}{(2\pi {\mathbf {i}})^n} \oint \cdots \oint \frac{1}{(v_2-v_1)\cdots (v_n-v_{n-1})} \prod _{i=1}^n f(v_i) dv_i \prod _{i=1}^s \left( \sum _{j=1}^n g_i(v_j)\right) \nonumber \\&\quad = \frac{n^{s-1}}{2\pi {\mathbf {i}}}\oint f(v)^n \prod _{i=1}^s g_i(v) dv, \end{aligned}$$
(A.9)

where the contours in both sides are around all of \(\{\mathfrak {p}_1, \ldots , \mathfrak {p}_m \}\), and for the left hand side we require \(|u_1| \ll \cdots \ll |u_n|\).

Proof

Take disjoint sets \(U_1, \ldots , U_n\), with \(\bigcup _{i=1}^n U_i = \{1, \ldots , s\}\) (some of which might be empty). In Theorem A.1 we let \(f_{i} = f\prod _{j\in U_{i} } g_j\) for each \(1 \le i \le n\), and get

$$\begin{aligned}&\sum _{\sigma \in S^{cyc}(n)} \frac{1}{(2\pi {\mathbf {i}})^n} \oint \cdots \oint \frac{1}{(v_2-v_1)\cdots (v_n-v_{n-1})} \prod _{i=1}^n \left( f(v_i) \prod _{j\in U_{\sigma (i)}} g_j(v_i) dv_i \right) \nonumber \\&\quad = \frac{1}{2\pi {\mathbf {i}}}\oint f(v)^n \prod _{i=1}^s g_i(v) dv. \end{aligned}$$
(A.10)

Summing over all \(n^s\) partitions \(U_1, \ldots , U_n\) of \(\{1, \ldots , s\}\) into n disjoint sets, we obtain (A.9). \(\square \)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gorin, V., Zhang, L. Interlacing adjacent levels of \(\beta \)–Jacobi corners processes. Probab. Theory Relat. Fields 172, 915–981 (2018). https://doi.org/10.1007/s00440-017-0823-8

Download citation

Mathematics Subject Classification

  • 33C45
  • 60B20
  • 60G60