Skip to main content
Log in

On the extreme values of the Riemann zeta function on random intervals of the critical line

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

In the present paper, we show that under the Riemann hypothesis, and for fixed \(h, \epsilon > 0\), the supremum of the real and the imaginary parts of \(\log \zeta (1/2 + it)\) for \(t \in [UT -h, UT + h]\) are in the interval \([(1-\epsilon ) \log \log T, (1+ \epsilon ) \log \log T]\) with probability tending to 1 when T goes to infinity, U being a uniform random variable in [0, 1]. This proves a weak version of a conjecture by Fyodorov, Hiary and Keating, which has recently been intensively studied in the setting of random matrices. We also unconditionally show that the supremum of \(\mathfrak {R}\log \zeta (1/2 + it)\) is at most \(\log \log T + g(T)\) with probability tending to 1, g being any function tending to infinity at infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arguin, L.-P., Belius, D., Bourgade, P., Raziwill, M., Soundararajan, K.: Maximum of the Riemann zeta function on a short interval of the critical line. E-prints, 12 (2016). arXiv:1612.08575

  2. Arguin, L.-P., Belius, D., Bourgade, P.: Maximum of the characteristic polynomial of random unitary matrices. Commun. Math. Phys. 349(2), 703–751 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arguin, L.-P., Belius, D., Harper, A.J.: Maxima of a randomized Riemann zeta function, and branching random walks. Ann. Appl. Probab. 27(1), 178–215 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aïdékon, E.: Convergence in law of the minimum of a branching random walk. Ann. Probab. 41(3A), 1362–1426 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aïdékon, E., Shi, Z.: Weak convergence for the minimal position in a branching random walk: a simple proof. Period. Math. Hungar. 61(1–2), 43–54 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bolthausen, E., Deuschel, J.-D., Giacomin, G.: Entropic repulsion and the maximum of the two-dimensional harmonic crystal. Ann. Probab. 29(4), 1670–1692 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bramson, M., Ding, J., Zeitouni, O.: Convergence in law of the maximum of the two-dimensional discrete Gaussian free field. Commun. Pure Appl. Math. 69(1), 62–123 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bourgade, P.: Mesoscopic fluctuations of the zeta zeros. Probab. Theory Relat. Fields 148(3–4), 479–500 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bourgain, J.: Decoupling, exponential sums and the Riemann zeta function. J. Am. Math. Soc. 30(1), 205–224 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bramson, M.-D.: Maximal displacement of branching Brownian motion. Commun. Pure Appl. Math. 31(5), 531–581 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bondarenko, A., Seip, K.: Large greatest common divisor sums and extreme values of the Riemann zeta function. Duke Math. J. 166(9), 1685–1701 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bramson, M., Zeitouni, O.: Tightness of the recentered maximum of the two-dimensional discrete Gaussian free field. Commun. Pure Appl. Math. 65(1), 1–20 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chhaibi, R., Madaule, T., Najnudel, J.: On the maximum of the C\(\beta \)E field. E-prints (2016). arXiv:1607.00243

  14. Ding, J., Roy, R., Zeitouni, O.: Convergence of the centered maximum of log-correlated Gaussian fields. Ann. Probab. E-prints (2015) (to appear). arXiv:1503.04588

  15. Farmer, D.-W., Gonek, S.-M., Hughes, C.-P.: The maximum size of \(L\)-functions. J. Reine Angew. Math. 609, 215–236 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Fyodorov, Y.-V., Hiary, G.-A., Keating, J.-P.: Freezing transition, characteristic polynomials of random matrices, and the Riemann zeta function. Phys. Rev. Lett. 108(17), 170601 (2012)

    Article  Google Scholar 

  17. Fyodorov, Y.-V., Keating, J.-P.: Freezing transitions and extreme values: random matrix theory and disordered landscapes. Phil. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372(2007), 20120503 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hughes, C.-P., Nikeghbali, A., Yor, M.: An arithmetic model for the total disorder process. Probab. Theory Relat. Fields 141(1–2), 47–59 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu, Y., Shi, Z.: Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. Ann. Probab. 37(2), 742–789 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kistler, N.: Derrida’s random energy models. From spin glasses to the extremes of correlated random fields. In: Correlated Random Systems: Five Different Methods, Volume 2143 of Lecture Notes in Math., pp. 71–120. Springer, Cham (2015)

  21. Kowalski, E., Nikeghbali, A.: Mod-Gaussian convergence and the value distribution of \(\zeta (\frac{1}{2}+it)\) and related quantities. J. Lond. Math. Soc. (2) 86(1), 291–319 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Katz, N.-M., Sarnak, P.: Random Matrices, Frobenius Eigenvalues, and Monodromy, Volume 45 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence (1999)

    Google Scholar 

  23. Keating, J.-P., Snaith, N.: Random matrix theory and \(\zeta (1/2 + it)\). Commun. Math. Phys. 214, 57–89 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Madaule, T.: Maximum of a log-correlated Gaussian field. Ann. Inst. H. Poincaré Probab. Stat. 51(4), 1369–1431 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Montgomery, H.-L.: The pair correlation of zeros of the zeta function. In: Analytic Number Theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), pp. 181–193. Amer. Math. Soc., Providence (1973)

  26. Paquette, E., Zeitouni, O.: The maximum of the CUE field. Int. Math. Res. Not. 1–92, 2017 (2017)

    Google Scholar 

  27. Selberg, A.: Old and new conjectures and results about a class of Dirichlet series. In: Collected Papers, Vol. II, pp. 47–63. Springer (1991)

  28. Soundararajan, K.: Moments of the Riemann zeta function. Ann. Math. (2) 170(2), 981–993 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Saksman, E., Webb, C.: The Riemann zeta function and Gaussian multiplicative chaos: statistics on the critical line. E-prints (2016). arXiv:1609.00027

  30. Titchmarsh, E.-C.: The Theory of the Riemann Zeta-Function, 2nd edn. The Clarendon Press, New York (1986). Edited and with a preface by D. R. Heath-Brown

    MATH  Google Scholar 

  31. Tsang, K.-M.: The distribution of the values of the Riemann zeta function. ProQuest LLC, Ann Arbor (1984). (Ph.D. Thesis—Princeton University)

    Google Scholar 

  32. Tsang, K.-M.: Some \(\Omega \)-theorems for the Riemann zeta-function. Acta Arith. 46(4), 369–395 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank R. Chhaibi for helpful discussions we had on the problem solved in the present article, and the referees for their comments and suggestions, which have greatly improved the writing of this paper. One of the referees suggested some of the questions stated at the end of the introduction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Najnudel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najnudel, J. On the extreme values of the Riemann zeta function on random intervals of the critical line. Probab. Theory Relat. Fields 172, 387–452 (2018). https://doi.org/10.1007/s00440-017-0812-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-017-0812-y

Keywords

Mathematics Subject Classification

Navigation