Aldous, D., Fill, J.: Reversible Markov chains and random walks on graphs. Unfinished monograph (2002). https://www.stat.berkeley.edu/~aldous/RWG/book.pdf
Basu, R., Hermon, J., Peres, Y.: Characterization of cutoff for reversible Markov chains. Ann. Probab. arXiv:1409.3250 (2013) (to appear)
Bobkov, S.G., Tetali, P.: Modified logarithmic Sobolev inequalities in discrete settings. J. Theor. Probab. 19(2), 289–336 (2006)
MathSciNet
Article
MATH
Google Scholar
Boczkowski, L., Peres, Y., Sousi, P.: Sensitivity of mixing times in Eulerian digraphs. arXiv:1603.05639 (2016)
Cattiaux, P., Guillin, A.: Hitting times, functional inequalities, lyapunov conditions and uniform ergodicity. arXiv:1604.06336 (2016)
Diaconis, P., Saloff-Coste, L.: Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab. 6(3), 695–750 (1996)
MathSciNet
Article
MATH
Google Scholar
Ding, J., et al.: Sensitivity of mixing times. Electron. Commun. Probab. 18, 1–6 (2013)
MathSciNet
Article
MATH
Google Scholar
Gibbs, A.L., Su, F.E.: On choosing and bounding probability metrics. Int. Stat. Rev. 70(3), 419–435 (2002)
Article
MATH
Google Scholar
Goel, S., Montenegro, R., Tetali, P.: Mixing time bounds via the spectral profile. Electron. J. Probab. 11(1), 1–26 (2006)
MathSciNet
Article
MATH
Google Scholar
Hermon, J.: On sensitivity of uniform mixing times. Annales de l’Institut Henri Poincaré Probabilités et Statistiques (2016, to appear). arXiv:1607.01672
Hermon, J., Peres, Y.: The power of averaging at two consecutive time steps: proof of a mixing conjecture by Aldous and Fill. Ann. Insti. Henri Poincaré Prob. Stat. arXiv:1508.04836 (2015) (to appear)
Kozma, G.: On the precision of the spectral profile. Lat. Am. J. Probab. Math. Stat. 3, 321–329 (2007)
MathSciNet
MATH
Google Scholar
Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society, Providence (2009)
MATH
Google Scholar
Mathai, A.M., Rathie, P.N.: Basic Concepts in Information Theory and Statistics: Axiomatic Foundations and Applications. Halsted Press, New York (1975)
MATH
Google Scholar
Mossel, E., Oleszkiewicz, K., Sen, A.: On reverse hypercontractivity. Geom. Funct. Anal. 23(3), 1062–1097 (2013)
MathSciNet
Article
MATH
Google Scholar
Norris, J., Peres, Y., Zhai, A.: Surprise probabilities in Markov chains. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1759–1773. SIAM (2015)
Peres, Y., Sousi, P.: Mixing times are hitting times of large sets. J. Theor. Probab. 28(2), 488–519 (2015)
MathSciNet
Article
MATH
Google Scholar
Saloff-Coste, L.: Lectures on finite Markov chains. In: Lectures on Probability Theory and Statistics (Saint-Flour, 1996). Lecture Notes in Math., vol. 1665, pp. 301–413. Springer, Berlin (1997)
Starr, N.: Operator limit theorems. Trans. Am. Math. Soc. 121, 90–115 (1966)
MathSciNet
Article
MATH
Google Scholar