Skip to main content

Advertisement

Log in

Quenched invariance principles for the random conductance model on a random graph with degenerate ergodic weights

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We consider a stationary and ergodic random field \(\{\omega (e) : e \in E_d\}\) that is parameterized by the edge set of the Euclidean lattice \(\mathbb Z^d\), \(d \ge 2\). The random variable \(\omega (e)\), taking values in \([0, \infty )\) and satisfying certain moment bounds, is thought of as the conductance of the edge e. Assuming that the set of edges with positive conductances give rise to a unique infinite cluster \(\mathcal C_{\infty }(\omega )\), we prove a quenched invariance principle for the continuous-time random walk among random conductances under certain moment conditions. An essential ingredient of our proof is a new anchored relative isoperimetric inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andres, S., Barlow, M.T., Deuschel, J.-D., Hambly, B.M.: Invariance principle for the random conductance model. Probab. Theory Relat. Fields 156(3–4), 535–580 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andres, S., Deuschel, J.-D., Slowik, M.: Invariance principle for the random conductance model in a degenerate ergodic environment. Ann. Probab. 43(4), 1866–1891 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andres, S., Deuschel, J.-D., Slowik, M.: Harnack inequalities on weighted graphs and some applications to the random conductance model. Probab. Theory Relat. Fields 164(3–4), 931–977 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andres, S., Deuschel, J.-D., Slowik, M.: Heat kernel estimates for random walks with degenerate weights. Electron. J. Probab. 21(33), 21 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Barlow, M., Burdzy, K., Timár, Á.: Comparison of quenched and annealed invariance principles for random conductance model: Part II. In: Chen, Z.-Q., Jacob, N., Takeda, M., Uemura, T. (eds.) Festschrift Masatoshi Fukushima, volume 17 of Interdiscip. Math. Sci., pp. 59–83. World Scientific Publishing, Hackensack (2015)

  6. Barlow, M., Burdzy, K., Timár, Á.: Comparison of quenched and annealed invariance principles for random conductance model. Probab. Theory Relat. Fields 164(3–4), 741–770 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barlow, M.T.: Random walks on supercritical percolation clusters. Ann. Probab. 32(4), 3024–3084 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barlow, M.T., Deuschel, J.-D.: Invariance principle for the random conductance model with unbounded conductances. Ann. Probab. 38(1), 234–276 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berger, N., Biskup, M.: Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Relat. Fields 137(1–2), 83–120 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Biskup, M.: Recent progress on the random conductance model. Probab. Surv. 8, 294–373 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Biskup, M., Prescott, T.M.: Functional CLT for random walk among bounded random conductances. Electron. J. Probab. 12(49), 1323–1348 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Boivin, D.: Weak convergence for reversible random walks in a random environment. Ann. Probab. 21(3), 1427–1440 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boivin, D., Depauw, J.: Spectral homogenization of reversible random walks on \(\mathbb{Z}^d\) in a random environment. Stoch. Process. Appl. 104(1), 29–56 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bricmont, J., Lebowitz, J.L., Maes, C.: Percolation in strongly correlated systems: the massless Gaussian field. J. Stat. Phys. 48(5–6), 1249–1268 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. De Masi, A., Ferrari, P.A., Goldstein, S., Wick, W.D.: An invariance principle for reversible Markov processes. Applications to random motions in random environments. J. Stat. Phys. 55(3–4), 787–855 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Helland, I.S.: Central limit theorems for martingales with discrete or continuous time. Scand. J. Stat. 9(2), 79–94 (1982)

    MathSciNet  MATH  Google Scholar 

  17. Kipnis, C., Varadhan, S.R.S.: Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Commun. Math. Phys. 104(1), 1–19 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kozlov, S.M.: The averaging method and walks in inhomogeneous environments. Uspekhi Mat. Nauk 40(2(242)), 61–120, 238 (1985)

    MathSciNet  MATH  Google Scholar 

  19. Mathieu, P.: Quenched invariance principles for random walks with random conductances. J. Stat. Phys. 130(5), 1025–1046 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mathieu, P., Piatnitski, A.: Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463(2085), 2287–2307 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Procaccia, E., Rosenthal, R., Sapozhnikov, A.: Quenched invariance principle for simple random walk on clusters in correlated percolation models. Preprint, available at arXiv:1310.4764 (2013)

  22. Rodriguez, P.-F., Sznitman, A.-S.: Phase transition and level-set percolation for the Gaussian free field. Commun. Math. Phys. 320(2), 571–601 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Saloff-Coste, L.: Lectures on finite Markov chains. In: Bernard, P. (ed.) Lectures on probability theory and statistics, Saint-Flour, 1996. Lecture Notes in Math., vol. 1665, pp. 301–413. Springer, Berlin (1997)

  24. Sapozhnikov, A.: Random walks on infinite percolation clusters in models with long-range correlations. Preprint, available at arXiv:1410.0605 (2014)

  25. Sidoravicius, V., Sznitman, A.-S.: Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Relat. Fields 129(2), 219–244 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Woess, W.: Random Walks on Infinite Graphs and Groups. Cambridge Tracts in Mathematics, vol. 138. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We thank Martin Barlow for useful discussions and valuable comments and in particular for suggesting the interpolation argument that is used in Lemma 3.3. T.A.N. gratefully acknowledges financial support of the DFG Research Training Group (RTG 1845) “Stochastic Analysis with Applications in Biology, Finance and Physics” and the Berlin Mathematical School (BMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Slowik.

Appendix: Ergodic theorem

Appendix: Ergodic theorem

In this appendix we provide an extension of the Birkhoff ergodic theorem that generalises the result obtained in [13, Theorem 3]. Consider a probability space \((\Omega , \mathcal F, {{\mathrm{\mathbb {P}}}})\) and a group of measure preserving transformations \(\tau _x : \Omega \rightarrow \Omega \), \(x \in \mathbb Z^d\) such that \(\tau _{x+y}= \tau _x\circ \tau _y\). Further, let \(B_1 \mathrel {\mathop :}=\{ x \in \mathbb R^d : |x| \le 1 \}\).

Theorem 4.1

Let \(\varphi \in L^{1}({{\mathrm{\mathbb {P}}}})\) and \(\varepsilon \in (0, d)\). Then, for \({{\mathrm{\mathbb {P}}}}\)-a.e. \(\omega \),

(4.1)

where the summation is taken over all \(x \in B(0, n) {\setminus } \{0\}\).

Proof

To start with, notice that the ergodic theorem, see [13, Theorem 3], implies that for \({{\mathrm{\mathbb {P}}}}\)-a.e. \(\omega \)

(4.2)

On the other hand, by means of Abel’s summation formula, we have that

where we used that \(j^{-(d-\varepsilon )} - (j+1)^{-(d-\varepsilon )} \le (d-\varepsilon ) j^{-(d+1-\varepsilon )}\). From this estimate we deduce that for any \(\varphi \in L^{1}({{\mathrm{\mathbb {P}}}})\) and \({{\mathrm{\mathbb {P}}}}\)-a.e. \(\omega \)

(4.3)

where \(C \mathrel {\mathop :}=\sup _{n \ge 1} |B(0, n)| / n^d < \infty \). On the other hand, for any \(k \ge 1\)

(4.4)

Since the last factor on the right-hand side of (4.4) is finite due to (4.3), we conclude that \({{\mathrm{\mathbb {P}}}}\)-a.s.

(4.5)

uniformly in n. The assertion follows by combining (4.2) and (4.5). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deuschel, JD., Nguyen, T.A. & Slowik, M. Quenched invariance principles for the random conductance model on a random graph with degenerate ergodic weights. Probab. Theory Relat. Fields 170, 363–386 (2018). https://doi.org/10.1007/s00440-017-0759-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-017-0759-z

Keywords

Mathematics Subject Classification

Navigation