Skip to main content
Log in

Berry–Esseen bounds and Edgeworth expansions in the central limit theorem for transport distances

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

For sums of independent random variables \(S_n = X_1 + \cdots + X_n\), Berry–Esseen-type bounds are derived for the power transport distances \(W_p\) in terms of Lyapunov coefficients \(L_{p+2}\). In the case of identically distributed summands, the rates of convergence are refined under Cramér’s condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agnew, R.P.: Global versions of the central limit theorem. Proc. Natl. Acad. Sci. USA 40, 800–804 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agnew, R.P.: Estimates for global central limit theorems. Ann. Math. Stat. 28, 26–42 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  3. Agnew, R.P.: Asymptotic expansions in global central limit theorems. Ann. Math. Stat. 30, 721–737 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bártfai, P.: Über die Entfernung der Irrfahrtswege. (German). Stud. Sci. Math. Hungar 5, 41–49 (1970)

    MATH  Google Scholar 

  5. Beiglböck, M., Schachermayer, W.: Duality for Borel measurable cost functions. Trans. Am. Math. Soc. 363(8), 4203–4224 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bhattacharya, R.N., Ranga Rao, R.: Normal Approximation and Asymptotic Expansions. Wiley. 1976. Also: Soc. for Industrial and Appl. Math., Philadelphia (2010)

  7. Bikjalis, A.: An asymptotic expansion for products of multidimensional characteristic functions. (Russian) Teor. Verojatnost. i Primenen 14, 508–511 (1969)

    MathSciNet  Google Scholar 

  8. Bikjalis, A.: Remainder terms in asymptotic expansions for characteristic functions and their derivatives. (Russian) Litovsk. Mat. Sb. 7, 571–582 (1967). Selected Transl. in Math. Statistics and Probability 11, 149–162 (1973)

  9. Bikjalis, A.: The accuracy of the approximation of the distributions of sums of independent identically distributed random variables by the normal distribution. (Russian) Litovsk Mat. Sb. 11, 237–240 (1971)

    MathSciNet  Google Scholar 

  10. Bobkov, S.G.: Entropic approach to E. Rio’s central limit theorem for \(W_2\) transport distance. Stat. Probab. Lett. 83(7), 1644–1648 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bobkov, S.G.: Closeness of probability distributions in terms of Fourier–Stieltjes transforms (English translation: Russian Math. Surveys). (Russian) Uspekhi Matem. Nauk 71(6), 37–98 (2016)

    Article  Google Scholar 

  12. Bobkov, S.G.: Asymptotic expansions for products of characteristic functions under moment assumptions of non-integer order. Preprint (2016). To appear in: The IMA Volumes in Mathematics and its Applications. Concentration, Convexity and Discrete Structures

  13. Bogachev, V.I.: Measure theory. Vol. I, II. Springer, Berlin (2007). Vol. I: xviii+500 pp., Vol. II: xiv+575 pp

  14. Bogachev, V.I., Kolesnikov, A.V.: The Monge–Kantorovich problem: achievements, connections, and prospects. (Russian) Uspekhi Mat. Nauk 67(5), 3–110 (2012); translation in: Russian Math. Surveys 67(5), 785–890 (2012)

  15. Bonis, T.: Stable measures and Stein’s method: rates in the sentral limit theorem and diffusion approximation. Preprint (2015). arXiv:1506.06966

  16. Cramér, H.: On the composition of elementary errors. Scand. Actuarial J. 11, 13–74 (1928)

    Article  MATH  Google Scholar 

  17. Cramér, H.: Random variables and probability distributions. Cambridge Tracts, no. 36 (1937)

  18. Esseen, C.-G.: Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law. Acta Math. 77, 1–125 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  19. Esseen, C.-G.: On mean central limit theorems. Kungl. Tekn. Högsk. Handl. Stockholm, 121 (1958)

  20. Fréchet, M.: Sur la distance de deux lois de probabilité. (French) Publ. Inst. Statist. Univ. Paris 6, 183–198 (1957)

  21. Ibragimov, R., Sharakhmetov, S.H.: On an exact constant for the Rosenthal inequality. (Russian) Teor. Veroyatnost. i Primenen. 42(2), 341–350 (1997); translation in Theory Probab. Appl. 42(2), 294–302 (1997)

  22. Johnson, W.B., Schechtman, G., Zinn, J.: Best constants in moment inequalities for linear combinations of independent and exchangeable random variables. Ann. Probab. 13(1), 234–253 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nagaev, S.V.: Some limit theorems for large deviations. Theory Probab. Appl. 10(1), 214–235 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nefedova, Y.S., Shevtsova, I.G.: On nonuniform convergence rate estimates in the central limit theorem. Theory Probab. Appl. 57(1), 28–59 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Osipov, L.V.: Asymptotic expansions in the central limit theorem. (Russian) Vestnik Leningrad. Univ. 19, 45–62 (1967)

    MathSciNet  Google Scholar 

  26. Osipov, L.V.: On asymptotic expansions of the distribution function of a sum of random variables with non uniform estimates for the remainder term. (Russian) Vestnik Leningrad. Univ. 1, 51–59 (1972)

    MathSciNet  Google Scholar 

  27. Petrov, V.V.: Sums of independent random variables. Translated from the Russian by A. A. Brown. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 82. Springer, New York-Heidelberg, 1975. x+346 pp. Russian ed.: Moscow, Nauka (1972)

  28. Pinelis, I.F., Utev, S.A.: Estimates of moments of sums of independent random variables. (Russian) Teor. Veroyatnost. i Primenen. 29(3), 554–557 (1984)

    MathSciNet  MATH  Google Scholar 

  29. Rio, E.: Distances minimales et distances idéales. C. R. Acad. Sci. Paris 326, 1127–1130 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rio, E.: Upper bounds for minimal distances in the central limit theorem. Ann. Inst. Henri Poincaré Probab. Stat. 45(3), 802–817 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rio, E.: Asymptotic constants for minimal distance in the central limit theorem. Electron. Commun. Probab. 16, 96–103 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rokhlin, V.A.: On the fundamental ideas of measure theory. (Russian) Mat. Sbornik N.S 25(67), 107–150 (1949)

    MathSciNet  Google Scholar 

  33. Sakhanenko, A.I.: Estimates in an invariance principle. (Russian) Limit theorems of probability theory, 27–44, 175, Trudy Inst. Mat., 5, “Nauka” Sibirsk. Otdel., Novosibirsk (1985)

  34. Statulevičius, V.A.: Limit theorems for densities and the asymptotic expansions for distributions of sums of independent random variables. (Russian) Teor. Verojatnost. i Primenen. 10, 645–659 (1965)

    MathSciNet  MATH  Google Scholar 

  35. van der Vaart, A.W., Wellner, J.A.: Weak convergence and empirical processes. With applications to statistics. Springer Series in Statistics. Springer, New York (1996)

    MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Emmanuel Rio for pointing to the preprint by T. Bonis, and the referees for valuable comments and additional references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey G. Bobkov.

Additional information

Partially supported by the Alexander von Humboldt Foundation and NSF Grant DMS-1612961.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobkov, S.G. Berry–Esseen bounds and Edgeworth expansions in the central limit theorem for transport distances. Probab. Theory Relat. Fields 170, 229–262 (2018). https://doi.org/10.1007/s00440-017-0756-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-017-0756-2

Keywords

Mathematics Subject Classification

Navigation