Skip to main content
Log in

Compact Brownian surfaces I: Brownian disks

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We show that, under certain natural assumptions, large random plane bipartite maps with a boundary converge after rescaling to a one-parameter family \((\mathrm {BD}_L,\, 0<L<\infty )\) of random metric spaces homeomorphic to the closed unit disk of \(\mathbb {R}^2\), the space \(\mathrm {BD}_L\) being called the Brownian disk of perimeter L and unit area. These results can be seen as an extension of the convergence of uniform plane quadrangulations to the Brownian map, which intuitively corresponds to the limit case where \(L=0\). Similar results are obtained for maps following a Boltzmann distribution, in which the perimeter is fixed but the area is random.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. By convention, the vertex map \(\circ \) consisting of no edges and only one vertex, “bounding” a face of degree 0, is considered as an element of \(\mathbf {B}\), so that \(\mathbf {B}_0=\{\circ \}\). It will only appear incidentally in the analysis.

  2. We could also consider other ways to measure the size of a map \(\mathbf {m}\), e.g. considering combinations of the form \(x_\mathbf {V}|\mathbf {V}(\mathbf {m})|+x_\mathbf {E}|\mathbf {E}(\mathbf {m})|+x_\mathbf {F}|\mathbf {F}(\mathbf {m})|\) for some \(x_\mathbf {V}\), \(x_\mathbf {E}\), \(x_\mathbf {F}\ge 0\) with sum 1 as is done for instance in [42] (in fact, due to the Euler formula, there is really only one degree of freedom rather than two). We will not address this here but we expect our results to hold in this context as well.

  3. The very recent preprints [24, 25] seem however to provide a decisive step towards the solution of this problem. There, the authors consider the similar problem of gluing two Brownian half-planes, a non-compact version of the Brownian disk introduced in [6] and [26], along their boundaries.

  4. We will use notation like \(Q_n\), \(C_n\), \(\ell _n\), \(D_n\), D with a different meaning from the preceding section in order to keep exposition lighter.

  5. This is of course an abuse of notation since (XZ) previously denoted the canonical process, however we did not want to introduce a further specific notation at this point.

References

  1. Abraham, C.: Rescaled bipartite planar maps converge to the Brownian map. Ann. Inst. Henri Poincaré Probab. Stat. 52(2), 575–595 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Addario-Berry, L., Albenque, M.: The scaling limit of random simple triangulations and random simple quadrangulations. Ann. Probab. arXiv:1306.5227 (2017, to appear)

  3. Albenque, M., Marckert, J.-F.: Some families of increasing planar maps. Electron. J. Probab. 13(56), 1624–1671 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aldous, D.J.: The continuum random tree. I. Ann. Probab. 19(1), 1–28 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aldous, D.J.: The continuum random tree. III. Ann. Probab. 21(1), 248–289 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baur, E., Miermont, G., Ray, G.: Classification of scaling limits of uniform quadrangulations with a boundary. arXiv:1608.01129 (2016) (preprint)

  7. Beltran, J., Le Gall, J.-F.: Quadrangulations with no pendant vertices. Bernoulli 19(4), 1150–1175 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bettinelli, J.: Scaling limits for random quadrangulations of positive genus. Electron. J. Probab. 15(52), 1594–1644 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bettinelli, J.: The topology of scaling limits of positive genus random quadrangulations. Ann. Probab. 40(5), 1897–1944 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bettinelli, J.: Scaling limit of random planar quadrangulations with a boundary. Ann. Inst. Henri Poincaré Probab. Stat. 51(2), 432–477 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bettinelli, J.: Geodesics in Brownian surfaces (Brownian maps). Ann. Inst. Henri Poincaré Probab. Stat. 52(2), 612–646 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bettinelli, J., Jacob, E., Miermont, G.: The scaling limit of uniform random plane maps, via the Ambjørn-Budd bijection. Electron. J. Probab. 19(74), 1–16 (2014)

    MATH  Google Scholar 

  13. Bettinelli, J., Miermont, G.: Compact Brownian surfaces II. The general case (2017) (in preparation)

  14. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation, Encyclopedia of Mathematics and its Applications, vol. 27. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  15. Bouttier, J., Di Francesco, P., Guitter, E.: Planar maps as labeled mobiles. Electron. J. Combin. 11, Research Paper 69 (2004) (electronic)

  16. Bouttier, J., Guitter, E.: Distance statistics in quadrangulations with a boundary, or with a self-avoiding loop. J. Phys. A 42(46), 465208, 44 (2009)

  17. Bouttier, J., Guitter, E.: Planar maps and continued fractions. Commun. Math. Phys. 309(3), 623–662 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry, Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  19. Chaumont, L., Pardo, J.C.: On the genealogy of conditioned stable Lévy forests. ALEA Lat. Am. J Probab. Math. Stat. 6, 261–279 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Cori, R., Vauquelin, B.: Planar maps are well labeled trees. Can. J. Math. 33(5), 1023–1042 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  21. Curien, N., Le Gall, J.-F.: The Brownian plane. J. Theor. Probab. 27, 1249–1291 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Duquesne, T., Le Gall, J.-F.: Random trees, Lévy processes and spatial branching processes. Astérisque 281, vi+147 (2002)

  23. Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces, Progress in Mathematics, vol. 152. Birkhäuser, Boston (1999)

    Google Scholar 

  24. Gwynne, E., Miller, J.: Convergence of the self-avoiding walk on random quadrangulations to \(\text{SLE}_{8/3}\) on \(\sqrt{8/3}\)-Liouville quantum gravity. arXiv:1608.00956 (2016) (preprint)

  25. Gwynne, E., Miller, J.: Metric gluing of Brownian and \(\sqrt{8/3}\)-Liouville quantum gravity surfaces. arXiv:1608.00955 (2016) (preprint)

  26. Gwynne, E., Miller, J.: Scaling limit of the uniform infinite half-plane quadrangulation in the Gromov–Hausdorff–Prokhorov-uniform topology. arXiv:1608.00954 (2016) (preprint)

  27. Le Gall, J.-F.: Spatial branching processes, random snakes and partial differential equations. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (1999)

  28. Le Gall, J.-F.: The topological structure of scaling limits of large planar maps. Invent. Math. 169(3), 621–670 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Le Gall, J.-F.: Geodesics in large planar maps and in the Brownian map. Acta Math. 205(2), 287–360 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Le Gall, J.-F.: Uniqueness and universality of the Brownian map. Ann. Probab. 41(4), 2880–2960 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Le Gall, J.-F., Miermont, G.: Scaling limits of random planar maps with large faces. Ann. Probab. 39(1), 1–69 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Le Gall, J.-F., Paulin, F.: Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere. Geom. Funct. Anal. 18(3), 893–918 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Le Gall, J.-F., Weill, M.: Conditioned Brownian trees. Ann. Inst. H. Poincaré Probab. Statist. 42(4), 455–489 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Marckert, J.-F., Miermont, G.: Invariance principles for random bipartite planar maps. Ann. Probab. 35(5), 1642–1705 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Marckert, J.-F., Mokkadem, A.: Limit of normalized random quadrangulations: the Brownian map. Ann. Probab. 34(6), 2144–2202 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Miermont, G.: Invariance principles for spatial multitype Galton–Watson trees. Ann. Inst. H. Poincaré Probab. Stat. 44(6), 1128–1161 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Miermont, G.: On the sphericity of scaling limits of random planar quadrangulations. Electron. Commun. Probab. 13, 248–257 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Miermont, G.: The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210(2), 319–401 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Miller, J., Sheffield, S.: An axiomatic characterization of the Brownian map. arXiv:1506.03806 (2015) (preprint)

  40. Pitman, J.: Combinatorial stochastic processes, Lecture Notes in Mathematics, vol. 1875. Springer, Berlin. Lectures from the 32nd Summer School on Probability Theory held in Saint-Flour, July 7–24, 2002, With a foreword by Jean Picard (2006)

  41. Schaeffer, G.: Conjugaison d’arbres et cartes combinatoires aléatoires, Ph.D. thesis. Université Bordeaux I (1998)

  42. Stephenson, R.: Local convergence of large critical multi-type Galton–Watson trees and applications to random maps. J. Theor. Probab. arXiv:1412.6911 (2014, to appear)

  43. Willard, S.: General Topology. Dover, Mineola (2004)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is partly supported by ANR-14-CE25-0014 (GRAAL) and ANR-15-CE40-0013 (Liouville). We also acknowledge partial support from the Isaac Newton Institute for Mathematical Sciences where part of this work was conducted, and where G.M. benefited from a Rothschild Visiting Professor position during January 2015. We thank Erich Baur, Timothy Budd, Guillaume Chapuy, Nicolas Curien, Igor Kortchemski, Jean-François Le Gall, Jason Miller, Gourab Ray and Scott Sheffield, for useful remarks and conversations during the elaboration of this work. Thanks also to the very thorough reading of two anonymous referees, whose comments were greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégory Miermont.

Additional information

2014 Wolfgang Doeblin Prize Article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bettinelli, J., Miermont, G. Compact Brownian surfaces I: Brownian disks. Probab. Theory Relat. Fields 167, 555–614 (2017). https://doi.org/10.1007/s00440-016-0752-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-016-0752-y

Mathematics Subject Classification

Navigation