Probability Theory and Related Fields

, Volume 168, Issue 1–2, pp 153–197 | Cite as

Spatial mixing and the connective constant: optimal bounds

  • Alistair Sinclair
  • Piyush Srivastava
  • Daniel Štefankovič
  • Yitong Yin
Article

Abstract

We study the problem of deterministic approximate counting of matchings and independent sets in graphs of bounded connective constant. More generally, we consider the problem of evaluating the partition functions of the monomer-dimer model (which is defined as a weighted sum over all matchings where each matching is given a weight \(\gamma ^{|V| - 2 |M|}\) in terms of a fixed parameter \(\gamma \) called the monomer activity) and the hard core model (which is defined as a weighted sum over all independent sets where an independent set I is given a weight \(\lambda ^{|I|}\) in terms of a fixed parameter \(\lambda \) called the vertex activity). The connective constant is a natural measure of the average degree of a graph which has been studied extensively in combinatorics and mathematical physics, and can be bounded by a constant even for certain unbounded degree graphs such as those sampled from the sparse Erdős–Rényi model \(\mathcal {G}(n, d/n)\). Our main technical contribution is to prove the best possible rates of decay of correlations in the natural probability distributions induced by both the hard core model and the monomer-dimer model in graphs with a given bound on the connective constant. These results on decay of correlations are obtained using a new framework based on the so-called message approach that has been extensively used recently to prove such results for bounded degree graphs. We then use these optimal decay of correlations results to obtain fully polynomial time approximation schemes (FPTASs) for the two problems on graphs of bounded connective constant. In particular, for the monomer-dimer model, we give a deterministic FPTAS for the partition function on all graphs of bounded connective constant for any given value of the monomer activity. The best previously known deterministic algorithm was due to Bayati et al. (Proc. 39th ACM Symp. Theory Comput., pp. 122–127, 2007), and gave the same runtime guarantees as our results but only for the case of bounded degree graphs. For the hard core model, we give an FPTAS for graphs of connective constant \(\varDelta \) whenever the vertex activity \(\lambda < \lambda _c(\varDelta )\), where \(\lambda _c(\varDelta ) :=\frac{\varDelta ^\varDelta }{(\varDelta - 1)^{\varDelta + 1}}\); this result is optimal in the sense that an FPTAS for any \(\lambda > \lambda _c(\varDelta )\) would imply that NP=RP (Sly and Sun, Ann. Probab. 42(6):2383–2416, 2014). The previous best known result in this direction was in a recent manuscript by a subset of the current authors (Proc. 54th IEEE Symp. Found. Comput. Sci., pp 300–309, 2013), where the result was established under the sub-optimal condition \(\lambda < \lambda _c(\varDelta + 1)\). Our techniques also allow us to improve upon known bounds for decay of correlations for the hard core model on various regular lattices, including those obtained by Restrepo et al. (Probab Theory Relat Fields 156(1–2):75–99, 2013) for the special case of \(\mathbb {Z}^2\) using sophisticated numerically intensive methods tailored to that special case.

Mathematics Subject Classification

82B20 60J10 68W25 68W40 

References

  1. 1.
    Alm, S.E.: Upper bounds for the connective constant of self-avoiding walks. Comb. Probab. Comput. 2(02), 115–136 (1993). doi:10.1017/S0963548300000547 MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alm, S.E.: Upper and lower bounds for the connective constants of self-avoiding walks on the Archimedean and Laves lattices. J. Phys. A 38(10), 2055–2080 (2005). doi:10.1088/0305-4470/38/10/001 MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Andrews, G.E.: The hard-hexagon model and Rogers–Ramanujan type identities. Proc. Nat. Acad. Sci. 78(9), 5290–5292 (1981). http://www.pnas.org/content/78/9/5290. PMID: 16593082
  4. 4.
    Bandyopadhyay, A., Gamarnik, D.: Counting without sampling: asymptotics of the log-partition function for certain statistical physics models random structures and algorithms. Random Struct. Algorithms 33(4), 452–479 (2008)CrossRefMATHGoogle Scholar
  5. 5.
    Baxter, R.J.: Hard hexagons: exact solution. J. Phys. A: Math. Gen. 13(3), L61–L70 (1980). doi:10.1088/0305-4470/13/3/007. http://iopscience.iop.org/0305-4470/13/3/007
  6. 6.
    Baxter, R.J., Enting, I.G., Tsang, S.K.: Hard-square lattice gas. J. Stat. Phys. 22(4), 465–489 (1980). doi:10.1007/BF01012867. http://link.springer.com/article/10.1007/BF01012867
  7. 7.
    Bayati, M., Gamarnik, D., Katz, D., Nair, C., Tetali, P.: Simple deterministic approximation algorithms for counting matchings. In: Proc. 39th ACM Symp. Theory Comput., pp. 122–127. ACM (2007). doi:10.1145/1250790.1250809
  8. 8.
    Broadbent, S.R., Hammersley, J.M.: Percolation processes I. Crystals and mazes. Math. Proc. Camb. Philos. Soc. 53(03), 629–641 (1957). doi:10.1017/S0305004100032680 MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Duminil-Copin, H., Smirnov, S.: The connective constant of the honeycomb lattice equals \(\sqrt{2+\sqrt{2}}\). Ann. Math. 175(3), 1653–1665 (2012). doi:10.4007/annals.2012.175.3.14 MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dyer, M., Greenhill, C.: On Markov chains for independent sets. J. Algorithms 35(1), 17–49 (2000)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Efthymiou, C.: MCMC sampling colourings and independent sets of \(\cal G(n,d/n)\) near uniqueness threshold. In: Proc. 25th ACM-SIAM Symp. Discret. Algorithms, pp. 305–316. SIAM (2014). Full version available at arXiv:1304.6666
  12. 12.
    Galanis, A., Ge, Q., Štefankovič, D., Vigoda, E., Yang, L.: Improved inapproximability results for counting independent sets in the hard-core model. Random Struct. Algorithms 45(1), 78–110 (2014). doi:10.1002/rsa.20479 MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Gamarnik, D., Katz, D.: Correlation decay and deterministic FPTAS for counting list-colorings of a graph. In: Proc. 18th ACM-SIAM Symp. Discret. Algorithms, pp. 1245–1254. SIAM (2007). http://dl.acm.org/citation.cfm?id=1283383.1283517
  14. 14.
    Gaunt, D.S., Fisher, M.E.: Hard-sphere lattice gases. I. Plane-square lattice. J. Chem. Phys. 43(8), 2840–2863 (1965). doi:10.1063/1.1697217. http://scitation.aip.org/content/aip/journal/jcp/43/8/10.1063/1.1697217
  15. 15.
    Georgii, H.O.: Gibbs Measures and Phase Transitions. De Gruyter Studies in Mathematics, Walter de Gruyter Inc, (1988)Google Scholar
  16. 16.
    Godsil, C.D.: Matchings and walks in graphs. J. Graph Th. 5(3), 285–297 (1981). http://onlinelibrary.wiley.com/doi/10.1002/jgt.3190050310/abstract
  17. 17.
    Goldberg, L.A., Jerrum, M., Paterson, M.: The computational complexity of two-state spin systems. Random Struct. Algorithms 23, 133–154 (2003)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Goldberg, L.A., Martin, R., Paterson, M.: Strong spatial mixing with fewer colors for lattice graphs. SIAM J. Comput. 35(2), 486–517 (2005). doi:10.1137/S0097539704445470. http://link.aip.org/link/?SMJ/35/486/1
  19. 19.
    Hammersley, J.M.: Percolation processes II. The connective constant. Math. Proc. Camb. Philos. Soc. 53(03), 642–645 (1957). doi:10.1017/S0305004100032692 MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Hammersley, J.M., Morton, K.W.: Poor man’s Monte Carlo. J. Royal Stat. Soc. B 16(1), 23–38 (1954). doi:10.2307/2984008 MathSciNetMATHGoogle Scholar
  21. 21.
    Hayes, T.P., Vigoda, E.: Coupling with the stationary distribution and improved sampling for colorings and independent sets. Ann. Appl. Probab. 16(3), 1297–1318 (2006)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Jensen, I.: Enumeration of self-avoiding walks on the square lattice. J. Phys. A 37(21), 5503 (2004). doi:10.1088/0305-4470/37/21/002 MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Jerrum, M., Sinclair, A.: Approximating the permanent. SIAM J. Comput. 18(6), 1149–1178 (1989). doi:10.1137/0218077. http://epubs.siam.org/doi/abs/10.1137/0218077
  24. 24.
    Jerrum, M., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial structures from a uniform distribution. Theor. Comput. Sci. 43, 169–188 (1986)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Kahn, J., Kim, J.H.: Random matchings in regular graphs. Combinatorica 18(2), 201–226 (1998). doi:10.1007/PL00009817. http://link.springer.com/article/10.1007/PL00009817
  26. 26.
    Kesten, H.: On the number of self-avoiding walks. II. J. Math. Phys. 5(8), 1128–1137 (1964). doi:10.1063/1.1704216 MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Li, L., Lu, P., Yin, Y.: Approximate counting via correlation decay in spin systems. In: Proc. 23rd ACM-SIAM Symp. Discret. Algorithms, pp. 922–940. SIAM (2012)Google Scholar
  28. 28.
    Li, L., Lu, P., Yin, Y.: Correlation decay up to uniqueness in spin systems. In: Proc. 24th ACM-SIAM Symp. Discret. Algorithms, pp. 67–84. SIAM (2013)Google Scholar
  29. 29.
    Luby, M., Vigoda, E.: Approximately counting up to four. In: Proc. 29th ACM Symp. Theory. Comput., pp. 682–687. ACM (1997). doi:10.1145/258533.258663
  30. 30.
    Lyons, R.: The Ising model and percolation on trees and tree-like graphs. Commun. Math. Phys. 125(2), 337–353 (1989)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Lyons, R.: Random walks and percolation on trees. Ann. Probab. 18(3), 931–958 (1990). doi:10.1214/aop/1176990730 MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Madras, N., Slade, G.: The Self-Avoiding Walk. Birkhäuser (1996)Google Scholar
  33. 33.
    Martinelli, F., Olivieri, E.: Approach to equilibrium of Glauber dynamics in the one phase region I. The attractive case. Comm. Math. Phys. 161(3), 447–486 (1994). doi:10.1007/BF02101929. http://link.springer.com/article/10.1007/BF02101929
  34. 34.
    Martinelli, F., Olivieri, E.: Approach to equilibrium of Glauber dynamics in the one phase region II. The general case. Comm. Math. Phys. 161(3), 487–514 (1994). doi:10.1007/BF02101930. http://link.springer.com/article/10.1007/BF02101930
  35. 35.
    Mossel, E.: Survey: Information flow on trees. In: Graphs, Morphisms and Statistical Physics, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 63, pp. 155–170. American Mathematical Society (2004)Google Scholar
  36. 36.
    Mossel, E., Sly, A.: Rapid mixing of Gibbs sampling on graphs that are sparse on average. Random Struct. Algorithms 35(2), 250–270 (2009). doi:10.1002/rsa.20276 MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Mossel, E., Sly, A.: Gibbs rapidly samples colorings of \(\cal G(n, d/n)\). Probab. Theory Relat. Fields 148(1–2), 37–69 (2010). doi:10.1007/s00440-009-0222-x MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Mossel, E., Sly, A.: Exact thresholds for Ising-Gibbs samplers on general graphs. Ann. Probab. 41(1), 294–328 (2013). doi:10.1214/11-AOP737 MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Nienhuis, B.: Exact critical point and critical exponents of \(O(n)\) models in two dimensions. Phys. Rev. Let. 49(15), 1062–1065 (1982). doi:10.1103/PhysRevLett.49.1062 MathSciNetCrossRefGoogle Scholar
  40. 40.
    Pemantle, R., Steif, J.E.: Robust phase transitions for Heisenberg and other models on general trees. Ann. Probab. 27(2), 876–912 (1999)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Pönitz, A., Tittmann, P.: Improved upper bounds for self-avoiding walks in \(\mathbb{Z}^{d}\). Electron. J. Comb., 7, Research Paper 21 (2000)Google Scholar
  42. 42.
    Restrepo, R., Shin, J., Tetali, P., Vigoda, E., Yang, L.: Improved mixing condition on the grid for counting and sampling independent sets. Probab. Theory Relat. Fields 156(1–2), 75–99 (2013). Extended abstract in Proc. IEEE Symp. Found. Comput. Sci., 2011MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Sinclair, A., Srivastava, P., Thurley, M.: Approximation algorithms for two-state anti-ferromagnetic spin systems on bounded degree graphs. J. Stat. Phys. 155(4), 666–686 (2014)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Sinclair, A., Srivastava, P., Yin, Y.: Spatial mixing and approximation algorithms for graphs with bounded connective constant. In: Proc. 54th IEEE Symp. Found. Comput. Sci., pp. 300–309. IEEE Computer Society (2013). Full version available at arXiv:1308.1762v1
  45. 45.
    Sly, A.: Computational transition at the uniqueness threshold. In: Proc. 51st IEEE Symp. Found. Comput. Sci., pp. 287–296. IEEE Computer Society (2010)Google Scholar
  46. 46.
    Sly, A., Sun, N.: Counting in two-spin models on \(d\)-regular graphs. Ann. Probab. 42(6), 2383–2416 (2014). doi:10.1214/13-AOP888. http://projecteuclid.org/euclid.aop/1412083628
  47. 47.
    Vera, J.C., Vigoda, E., Yang, L.: Improved bounds on the phase transition for the hard-core model in 2-dimensions. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, Lecture Notes in Computer Science, vol 8096, pp. 699–713. Springer Berlin Heidelberg (2013). doi:10.1007/978-3-642-40328-6_48
  48. 48.
    Vigoda, E.: A note on the Glauber dynamics for sampling independent sets. Electron. J. Combin. 8(1), R8 (2001). http://www.combinatorics.org/ojs/index.php/eljc/article/view/v8i1r8
  49. 49.
    Weisstein, E.W.: Self-avoiding walk connective constant. From MathWorld–a Wolfram Web Resource. http://mathworld.wolfram.com/Self-AvoidingWalkConnectiveConstant.html
  50. 50.
    Weitz, D.: Counting independent sets up to the tree threshold. In: Proc. 38th ACM Symp. Theory Comput., pp. 140–149. ACM (2006). doi:10.1145/1132516.1132538

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alistair Sinclair
    • 1
  • Piyush Srivastava
    • 2
  • Daniel Štefankovič
    • 3
  • Yitong Yin
    • 4
  1. 1.Computer Science DivisionUC BerkeleyBerkeleyUSA
  2. 2.Center for the Mathematics of InformationCaltechPasadenaUSA
  3. 3.Department of Computer ScienceUniversity of RochesterRochesterUSA
  4. 4.State Key Laboratory for Novel Software TechnologyNanjing UniversityNanjingChina

Personalised recommendations