Aizenman, M., Warzel, S.: The canopy graph and level statistics for random operators on trees. Math. Phys. Anal. Geom. 9(4), 291–333 (2006)
MathSciNet
Article
MATH
Google Scholar
Aldous, D., Lyons, R.: Processes on unimodular random networks. Electron. J. Probab. 12(54), 1454–1508 (2007)
MathSciNet
Article
MATH
Google Scholar
Angel, O., Hutchcroft, T., Nachmias, A., Ray, G.: A dichotomy for random planar maps, (2016) (in preparation)
Benjamini, I., Lyons, R., Peres, Y., Schramm, O.: Group-invariant percolation on graphs. Geom. Funct. Anal. 9(1), 29–66 (1999)
MathSciNet
Article
MATH
Google Scholar
Benjamini, I., Paquette, E., Pfeffer, J.: Anchored expansion, speed, and the hyperbolic Poisson Voronoi tessellation (2014) (arXiv e-prints)
Benjamini, I., Curien, N.: Ergodic theory on stationary random graphs. Electron. J. Probab 17(93), 20 (2012)
MathSciNet
MATH
Google Scholar
Benjamini, I., Kesten, H., Peres, Y., Schramm, O.: Geometry of the uniform spanning forest: transitions in dimensions \(4,8,12,\dots \). Ann. Math. 160(2), 465–491 (2004)
MathSciNet
Article
MATH
Google Scholar
Benjamini, I., Lyons, R., Peres, Y., Schramm, O.: Uniform spanning forests. Ann. Probab. 29(1), 1–65 (2001)
MathSciNet
MATH
Google Scholar
Burton, R., Pemantle, R.: Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances. Ann. Probab. 21(3), 1329–1371 (1993)
MathSciNet
Article
MATH
Google Scholar
Curien, N.: Planar stochastic hyperbolic infinite triangulations (2014). arXiv:1401.3297
Epstein, I., Monod, N.: Nonunitarizable representations and random forests. Int. Math. Res. Not. IMRN 22, 4336–4353 (2009)
Gaboriau, D.: Invariant percolation and harmonic Dirichlet functions. Geom. Funct. Anal. 15(5), 1004–1051 (2005)
MathSciNet
Article
MATH
Google Scholar
Gaboriau, D.: What is \(\ldots \) cost? Not. Am. Math. Soc. 57(10), 1295–1296 (2010)
MathSciNet
MATH
Google Scholar
Gaboriau, D., Lyons, R.: A measurable-group-theoretic solution to von Neumann’s problem. Invent. Math. 177(3), 533–540 (2009)
MathSciNet
Article
MATH
Google Scholar
Grimmett, G.: The random-cluster model, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 333. Springer, Berlin (2006)
Google Scholar
Häggström, O.: Random-cluster measures and uniform spanning trees. Stoch. Process. Appl. 59(2), 267–275 (1995)
MathSciNet
Article
MATH
Google Scholar
Hebisch, W., Saloff-Coste, L.: Gaussian estimates for Markov chains and random walks on groups. Ann. Probab. 21(2), 673–709 (1993)
MathSciNet
Article
MATH
Google Scholar
Holroyd, A.E., Levine, L., Mészáros, K., Peres, Y., Propp, J., Wilson, D.B.: Chip-firing and rotor-routing on directed graphs, in and out of equilibrium. Progr. Probab., vol. 60, pp. 331–364. Birkhäuser, Basel (2008)
Hutchcroft, T.: Wired cycle-breaking dynamics for uniform spanning forests. arXiv:1504.03928
Járai, A.A., Redig, F.: Infinite volume limit of the abelian sandpile model in dimensions \(d\ge 3\). Probab. Theory Related Fields 141(1–2), 181–212 (2008)
MathSciNet
Article
MATH
Google Scholar
Járai, A.A., Werning, N.: Minimal configurations and sandpile measures. J. Theoret. Probab. 27(1), 153–167 (2014)
MathSciNet
Article
MATH
Google Scholar
Kenyon, R.: The asymptotic determinant of the discrete Laplacian. Acta Math. 185(2), 239–286 (2000)
MathSciNet
Article
MATH
Google Scholar
Kirchhoff, G.: Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Ann. Phys. und Chem. 72, 497–508 (1847)
Lawler, G.F.: A self-avoiding random walk. Duke Math. J. 47(3), 655–693 (1980)
MathSciNet
Article
MATH
Google Scholar
Lyons, R., Peres, Y.: Probability on trees and networks. Cambridge University Press, Cambridge (2015) (current version available at http://mypage.iu.edu/~rdlyons/) (in preparation)
Lyons, R.: Random complexes and \(l^2\)-Betti numbers. J. Topol. Anal. 1(2), 153–175 (2009)
MathSciNet
Article
MATH
Google Scholar
Lyons, R., Morris, B.J., Schramm, O.: Ends in uniform spanning forests. Electron. J. Probab. 13(58), 1702–1725 (2008)
MathSciNet
Article
MATH
Google Scholar
Lyons, R., Schramm, O.: Indistinguishability of percolation clusters. Ann. Probab. 27(4), 1809–1836 (1999)
MathSciNet
Article
MATH
Google Scholar
Majumdar, S.N., Dhar, D.: Equivalence between the abelian sandpile model and the \(q \rightarrow 0\) limit of the potts model. Phys. A 185, 129–145 (1992)
Morris, B.: The components of the wired spanning forest are recurrent. Probab. Theory Related Fields 125(2), 259–265 (2003)
MathSciNet
Article
MATH
Google Scholar
Pemantle, R.: Choosing a spanning tree for the integer lattice uniformly. Ann. Probab. 19(4), 1559–1574 (1991)
MathSciNet
Article
MATH
Google Scholar
Propp, J.G., Wilson, D.B.: How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph. J. Algorithms 27(2), 170–217 (1998) [7th Annual ACM-SIAM Symposium on Discrete Algorithms (Atlanta, GA, 1996)]
Timár, A.: Indistinguishability of components of random spanning forests. arXiv:1506.01370
Wilson, D.B.: Generating random spanning trees more quickly than the cover time. In: Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing, pp. 296–303 (Philadelphia, PA, 1996). ACM, New York (1996)