Rough paths and 1d SDE with a time dependent distributional drift: application to polymers


Motivated by the recent advances in the theory of stochastic partial differential equations involving nonlinear functions of distributions, like the Kardar–Parisi–Zhang (KPZ) equation, we reconsider the unique solvability of one-dimensional stochastic differential equations, the drift of which is a distribution, by means of rough paths theory. Existence and uniqueness are established in the weak sense when the drift reads as the derivative of a \(\alpha \)-Hölder continuous function, \(\alpha >1/3\). Regularity of the drift part is investigated carefully and a related stochastic calculus is also proposed, which makes the structure of the solutions more explicit than within the earlier framework of Dirichlet processes.

This is a preview of subscription content, access via your institution.


  1. 1.

    Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions. Commun. Pure Appl. Math. 64, 466–537 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Andreoletti, P., Diel, R.: Limit law of the local time for Brox’s diffusion. J. Theor. Probab. 24, 634–656 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Bass, R., Chen, Z.-Q.: Stochastic differential equations for Dirichlet processes (English summary). Probab. Theory Relat. Fields 121, 422–446 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Bertini, L., Giacomin, G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183, 571–607 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Brox, T.: A one-dimensional diffusion process in a Wiener medium. Ann. Probab. 14, 1206–1218 (1986)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Catellier, R., Gubinelli, M.: Averaging along irregular curves and regularisation of ODEs. Technical report. (2014)

  7. 7.

    Davie, A.M.: Uniqueness of solutions of stochastic differential equations. Int. Math. Res. Not. 24, 26 (2007)

  8. 8.

    Diel, R.: Almost sure asymptotics for the local time of a diffusion in Brownian environment. Stoch. Process. Appl. 121, 2303–2330 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Ethier, S., Kurtz, T.G.: Characterization and Convergence. Wiley, New York (1986)

    Google Scholar 

  10. 10.

    Flandoli, F.: Random Perturbation of PDEs and Fluid Dynamic Models. Lectures from the 40th Probability Summer School held in Saint-Flour, 2010. Lecture Notes in Mathematics, vol. 2015. Springer, Heidelberg (2011)

  11. 11.

    Flandoli, F., Issoglio, E., Russo, F.: Multidimensional stochastic differential equations with distributional drift. Technical report. (2014)

  12. 12.

    Flandoli, F., Russo, F., Wolf, J.: Some SDEs with distributional drift. I. General calculus. Osaka J. Math. 40, 493–542 (2003)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Flandoli, F., Russo, F., Wolf, J.: Some SDEs with distributional drift. II. Lyons–Zheng structure, it’s formula and semimartingale characterization. Random Oper. Stoch. Equ. 12 2, 145–184 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall Inc, Englewood Cliffs (1964)

    Google Scholar 

  15. 15.

    Friz, P., Hairer, M.: A Course on Rough Paths (with an Introduction to Regularity Structures). Springer, Berlin (2014)

    Google Scholar 

  16. 16.

    Friz, P., Victoir, N.: Multidimensional Stochastic Processes as Rough Paths. Theory and Applications. Cambridge University Press, London (2010)

    Google Scholar 

  17. 17.

    Gubinelli, M.: Controlling rough paths. J. Funct. Anal. 216, 86–140 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Hairer, M.: Rough stochastic PDEs. Commun. Pure Appl. Math. 64, 1547–1585 (2011)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Hairer, M.: Solving the KPZ equation. Ann. Math. 178, 559–664 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Hu, Y., Shi, Z.: The limits of Sinai’s simple random walk in random environment. Ann. Probab. 26, 1477–1521 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Hu, Y., Shi, Z.: The local time of simple random walk in random environment. J. Theor. Probab. 11, 765–793 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamical scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    Article  MATH  Google Scholar 

  23. 23.

    Krylov, N.V., Röckner, M.: Strong solutions of stochastic equations with singular time dependent drift. Probab. Theory Relat. Fields 131, 154–196 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Lyons, T., Caruana, M., Lévy, T.: Differential Equations Driven by Rough Paths. Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, 2004. Lecture Notes in Mathematics, vol. 1908. Springer, Berlin (2007)

  25. 25.

    Lyons, T., Qian, Z.: System Control and Rough Paths. Oxford University Press, Oxford (2002)

    Google Scholar 

  26. 26.

    Quastel, J.: Introduction to KPZ. Notes from the Saint-Flour summer school. (2012)

  27. 27.

    Russo, F., Trutnau, G.: Some parabolic PDEs whose drift is an irregular random noise in space. Ann. Probab. 35, 2213–2262 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Springer, Berlin (1979)

    Google Scholar 

  29. 29.

    Tanaka, H.: Localization of a diffusion process in a one-dimensional Brownian environment. Commun. Pure Appl. Math. 17, 755–766 (1994)

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Veretennikov, A.Yu.: Strong solutions and explicit formulas for solutions of stochastic integral equations. Math. Sb. 111, 434–452 (1980)

  31. 31.

    Young, L.C.: An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67, 251–282 (1936)

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Zvonkin, A.K.: A transformation of the phase space of a diffusion process that will remove the drift. Math. Sb. 93, 129–149 (1974)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to François Delarue.



Lemma 33

Given a sequence of smooth paths \((Y^n)_{n \ge 1}\) such that, for some \(T_{0}>0\) and any \(T \in [0,T_{0}]\), the sequence \((W^{n,T}=(Y^n,Z^{n,T}))_{n \ge 1}\) satisfies the assumption of Proposition 6, with \(\kappa =\sup _{0 \le T \le T_{0}} \sup _{n \ge 1} \kappa _{\alpha ,\chi }((W_{t}^{n,T},{\fancyscript{W}}_{t}^{n,T})_{0 \le t <T}) < \infty \), then, we can assume that, for any \(n \ge 1\), \(Y^n\) has bounded derivatives on the whole space.


For \(N \in {\mathbb N} {\setminus } \{0\}\), we consider a smooth function \(\varphi ^N : {\mathbb {R}}\rightarrow [0,1]\), symmetric, equal to \(1\) on \([0,N]\) and to \(0\) on \([2N,+\infty )\), non-increasing on \([N,2N]\), satisfying \(\Vert \mathrm{d}^p \varphi ^N/\mathrm{d}x^p \Vert _{\infty } \le c_{p}/N^p\) for some \(c_{p} \ge 1\), independent of \(N\), for any integer \(p \ge 1\). Then, we let \(Y^{n,N}_{t}(x)=Y^n_{t}(0)+\int _{0}^x \varphi ^N(y) \partial _{x} Y^n_{t}(y) \mathrm{d}y\) and, for a given \(T>0\), we define \(Z^{n,N,T}\), \(W^{n,N,T}\) and \({\fancyscript{W}}^{n,N,T}\) accordingly.

For a given \(n\), \((Y^{n,N})_{N \ge 1}\) (resp. \(\partial _{x}^p Y^{n,N}\) for an integer \(p \ge 1\)) converges towards \(Y^n\) (resp. \(\partial _{x}^p Y^n\)) as \(N\) tends to \(\infty \), uniformly in \(x\) in compact sets and in \(t \in [0,T)\). Using the representations of \(Z_{t}^{n,N,T}\) and \(Z^{n,T}_{t}\), see (13), the same holds true for the sequence \((Z^{n,N,T})_{N \ge 1}\) (resp. \(({W}^{n,N,T})_{N \ge 1}\)) with \(Z^{n,T}\) (resp. \(W^{n,T}\)) as limit path. Hence, \(({{\fancyscript{W}}}_{t}^{n,N,T})_{N \ge 1}\) converges towards \({\fancyscript{W}}_{t}^{n,T}\) in norm \(\Vert \cdot \Vert _{\alpha }\), uniformly in \(t \in [0,T)\). Using the same notation as in Proposition 6, \((\Vert (W^{n,N,T}-W^{n,T},{\fancyscript{W}}^{n,N,T} - {\fancyscript{W}}^{n,T})\Vert _{0,\alpha }^{[0,T) \times {\mathbb {I}}})_{N \ge 1}\) tends to \(0\) as \(N\) tends to \(\infty \). Therefore, we can find a sequence \((N_{n})_{n \ge 1}\) such that \(\Vert (W^{n,N_{n},T}-W^{n,T},{\fancyscript{W}}^{n,N_{n},T} - {\fancyscript{W}}^{n,T})\Vert _{0,\alpha }^{[0,T) \times {\mathbb {I}}}\), and thus \(\Vert (W^{n,N_{n},T}-W^{T},{\fancyscript{W}}^{n,N_{n},T} - {\fancyscript{W}}^{T})\Vert _{0,\alpha }^{[0,T) \times {\mathbb {I}}}\), tend to \(0\) as \(n\) tends to \(\infty \), which fits (1) in Proposition 6.

We now discuss (2) in Proposition 6. We start with the Hölder estimate of \(Y^{n,N}_{t}\). For \(0\le x \le y \le a\), with \(a \ge 1\), the second mean-value theorem yields \({Y}^{n,N}_{t}(y) - {Y}^{n,N}_{t}(x) = \varphi _{N}(x) [Y^{n}_{t}(y')-Y_{t}^{n}(x)]\), for \(y' \in [x,y]\). We deduce that \(\vert Y^{n,N}_{t}(y) - Y^{n,N}_{t}(x) \vert \le \kappa a^{\chi } \vert y - x \vert ^{\alpha }\). The same holds true when \(-a \le y \le x \le 0\). Changing \(\kappa \) into \(2\kappa \), we get the same result for any \(x,y \in [-a,a]\). By Lemma 19, the bound \(\vert {Z}^{n,N}_{t}(x) - {Z}^{n,N}_{t}(y) \vert \le \kappa a^{\chi } \vert x-y \vert ^{\alpha }\) follows.

We finally discuss the regularity of the second-order integrals. As discussed in Sect. 5, it suffices to focus on the cross-integral \(\int _{x}^y [ {Z}^{n,N}_{t}(z) - {Z}^{n,N}_{t}(x)] \mathrm{d}{Y}^{n,N}_{t}(z)\).

By (13), \(\partial _{t} Z_{t}^{n,N,T}(x) + (1/2) \partial ^2_{x} Z_{t}^{n,N,T}(x) = - \partial ^2_{x} [Y_{t}^{n,N}](x) = - \partial _{x} [ \varphi ^N \partial _{x} Y^{n}_{t}](x)\). Similarly, \(\partial _{t} Z_{t}^{n,T}(x) + (1/2) \partial ^2_{x} Z_{t}^{n,T}(x) = - \partial ^2_{x} [Y_{t}^{n}](x)\). Therefore,

$$\begin{aligned} \partial _{t} \bigl [ Z_{t}^{n,N,T} - \varphi ^N Z_{t}^{n,T} \bigr ] + \tfrac{1}{2} \partial ^2_{x} \bigl [ Z_{t}^{n,N,T} -\varphi ^N Z_{t}^{n,T} \bigr ] = - \varphi _{N}' \partial _{x} \bigl [Y^{n}_{t} + Z^{n,T}_{t} \bigr ] - \tfrac{1}{2} \varphi _{N}'' Z^{n,T}_{t}, \end{aligned}$$

with \(Z_{T}^{n,N,T} - Z_{T}^{n,T}=0\). Therefore, integrating against \(p_{s-t}\) and then integrating by parts,

$$\begin{aligned}&Z_{t}^{n,N,T}(x) - \varphi ^N(x) Z_{t}^{n,T}(x) \nonumber \\&\quad = \int _{t}^T \int _{{\mathbb {R}}} \partial _{x} p_{s-t}(x-y) \varphi _{N}'(y) \bigl [Y^{n}_{t} + Z^{n,T}_{t} \bigr ](y) \mathrm{d}y \mathrm{d}s\nonumber \\&\quad \quad - \int _{t}^T \int _{{\mathbb {R}}} p_{s-t}(x-y) \varphi _{N}''(y) \Bigl ( \bigl [Y^{n}_{t} + Z^{n,T}_{t} \bigr ](y) +\frac{1}{2} Z^{n,T}_{t}(y) \Bigr ) \mathrm{d}y \mathrm{d}s. \end{aligned}$$

The aim is to differentiate both sides of the equality in order to estimate the derivative of the left-hand side. In order to bound the derivative of the right-hand side, we discuss the Hölder constant of the integrands right above. We have \(\vert \varphi _{N}'(y) Y^{n}_{t}(y) - \varphi _{N}'(x) Y^{n}_{t}(x) \vert \le c_{2} \vert Y^n_{t}(x) \vert \vert y - x \vert /N^2 + (c_{1}\kappa /N) a^{\chi } \vert y -x \vert ^{\alpha }\), for \(x,y \in [-a,a]\), \(a \ge 1\). Modifying \(\kappa \) if necessary \(\vert Y^n_{t}(x) \vert \le \kappa a^{1+\chi }\). Therefore, we can find a constant \(C \ge 0\) such that

$$\begin{aligned} \vert \varphi _{N}'(y) Y^{n}_{t}(y) - \varphi _{N}'(x) Y^{n}_{t}(x) \vert \le C a^{1+\chi } \vert y - x \vert /N^2 + C a^{\chi } \vert y -x \vert ^{\alpha }/N. \end{aligned}$$

Since \(\varphi _{N}' =0\) outside \([-2N,2N]\), we can always assume that \(x,y \in [-2N,2N]\) (by projecting \(x\) and \(y\) onto \([-2N,2N])\) and thus that \(a \le 2N\). Then, the left-hand side is less than \(C a^{\chi } \vert y -x \vert ^{\alpha }/N\). Using a similar argument for all the other terms of the same type in the right-hand side of (96), we deduce that the left-hand side in (96) is differentiable and that \(\vert \partial _{x} [ Z_{t}^{n,N,T} - \varphi ^N Z_{t}^{n,T}](x) \vert \le C a^{\chi }/N\), when \(x \in [-a,a]\), \(a \ge 1\). By integration by parts,

$$\begin{aligned}&\biggl \vert \int _{x}^y \Bigl ( \bigl [ Z_{t}^{n,N,T} - \varphi ^N Z_{t}^{n,T}\bigr ](z) - \bigl [ Z_{t}^{n,N,T} - \varphi ^N Z_{t}^{n,T}\bigr ](x) \Bigr ) \mathrm{d}Y^{n,N}_{t}(z) \biggr \vert \\&\quad = \biggl \vert \int _{x}^y \bigl [Y^{n,N}(y) - Y^{n,N}(z) \bigr ] \partial _{x} [ Z_{t}^{n,N,T} - \varphi ^N Z_{t}^{n,T}](z) \mathrm{d}z \biggr \vert \le C \frac{a^{2\chi }\vert x-y \vert ^{1+\alpha }}{N}. \end{aligned}$$

Since \(\partial _{x}Y^{n,N}_{t}(z)=0\) when \(\vert z \vert \ge 2N\), we can always assume that \(x,y \in [-2N,2N]\) and \(a \le 2N\). We deduce that the term in the first line is less than \(C a^{2\chi } \vert x-y \vert ^{2\alpha }/N^{\alpha }\). To end up the analysis, it thus suffices to prove that

$$\begin{aligned} \biggl \vert \int _{x}^y \bigl ( \varphi ^N(z) Z_{t}^{n,T}(z) - \varphi ^N(x) Z_{t}^{n,T}(x) \bigr ) \mathrm{d}Y^{n,N}_{t}(z) \biggr \vert \le C a^{2\chi }\vert x-y \vert ^{2\alpha }. \end{aligned}$$

Since \(\partial _{x} Y^{n,N}_{t}(z) = \varphi ^N(z) \partial _{x} Y^n_{t}(z)\), we can use again the second mean-value theorem to handle \(\int _{x}^y \varphi ^N(z)[ Z_{t}^{n,T}(z) - Z_{t}^{n,T}(x)] \mathrm{d}Y^{n,N}_{t}(z) = \int _{x}^y (\varphi ^N(z))^2[ Z_{t}^{n,T}(z) - Z_{t}^{n,T}(x)] \mathrm{d}Y^{n}_{t}(z)\). Therefore, it suffices to focus on \(Z_{t}^{n,T}(x) \int _{x}^y [ \varphi ^N(z) - \varphi ^N(x)] \mathrm{d}Y^{n,N}_{t}(z)\). By integration by parts,

$$\begin{aligned}&\biggl \vert Z_{t}^{n,T}(x) \int _{x}^y [ \varphi ^N(z) - \varphi ^N(x)] \mathrm{d}Y^{n,N}_{t}(z) \biggr \vert \\&\quad = \biggl \vert Z_{t}^{n,T}(x) \int _{x}^y \bigl [Y^{n,N}_{t}(y)-Y^{n,N}_{t}(z) \bigr ] ( \varphi ^N)'(z) \mathrm{d}z \biggr \vert , \end{aligned}$$

which is less than \(C a^{2\chi } \vert y -x \vert ^{1+\alpha }/N\) (following Lemma 19, \(Z^{n,T}_{t}\) satisfies \(\vert Z^{n,T}_{t}(x) \vert \le C a^{\chi }\) –better than the elementary but rough bound \(\vert Z^{n,T}_{t}(x) \vert \le C a^{1+\chi }\)–). Limiting the analysis to the case \(a \le 2N\), we conclude as above. \(\square \)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Delarue, F., Diel, R. Rough paths and 1d SDE with a time dependent distributional drift: application to polymers. Probab. Theory Relat. Fields 165, 1–63 (2016).

Download citation

Mathematics Subject Classification

  • Primary 60H10
  • Secondary 60H05
  • 82D60