Skip to main content

Sublinear variance in first-passage percolation for general distributions


We prove that the variance of the passage time from the origin to a point \(x\) in first-passage percolation on \(\mathbb {Z}^d\) is sublinear in the distance to \(x\) when \(d\ge 2\), obeying the bound \(C\Vert x\Vert /\log \Vert x\Vert \), under minimal assumptions on the edge-weight distribution. The proof applies equally to absolutely continuous, discrete and singular continuous distributions and mixtures thereof, and requires only \(2+ \log \) moments. The main result extends work of Benjamini–Kalai–Schramm (Ann Prob 31, 2003) and Benaim–Rossignol (Ann Inst Henri Poincaré Prob Stat 3, 2008).

This is a preview of subscription content, access via your institution.


  1. 1.

    Alexander, K.S.: A note on some rates of convergence in first-passage percolation. Ann. Appl. Probab. 3 (1993)

  2. 2.

    Alexander, K.S., Zygouras, N.: Subgaussian concentration and rates of convergence in directed polymers. Elect. J. Probab. 18(5) (2013)

  3. 3.

    Auffinger, A., Damron, M.: Differentiability at the edge of the percolation cone and related results in first-passage percolation. Probab. Theory Relat. Fields 156 (2013)

  4. 4.

    Benjamini, I., Kalai, G., Schramm, O.: First-passage percolation has sublinear distance variance. Ann. Prob. 31 (2003)

  5. 5.

    Blair-Stahn, N.: First passage percolation and competition models. arXiv:1005.0649

  6. 6.

    Benaim, M., Rossignol, R.: Exponential concentration for first passage percoaltion through modified Poincaré inequalities. Ann. Inst. Henri Poincaré Prob. Stat. 3 (2008)

  7. 7.

    Bonami, A.: Etude des coefficients de Fourier des fonctions de \(L^p(G)\). In: Annales de l’Institut Fourier, vol. 20 (1970)

  8. 8.

    Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities: A Non Asymptotic Theory of Independence. Oxford University Press, Oxford (2013)

    Book  Google Scholar 

  9. 9.

    Chayes, L.: On the critical behavior of the first passage time in \(d \ge 3\). Hel. Phys. Acta 64 (1991)

  10. 10.

    Cox, J.T., Durrett, R.: Some limit theorems for percolation processes with necessary and sufficient conditions. Ann. Probab. 4 (1981)

  11. 11.

    Cox, J.T., Gandolfi, A., Griffin, P., Kesten, H.: Greedy lattice animals I: upper bounds. Ann. Appl. Prob. 3 (1993)

  12. 12.

    Damron, M., Kubota, N.: Gaussian concentration for the lower tail in first-passage percolation under low moments (2014). arXiv: 1406.3105

  13. 13.

    Falik, D., Samorodnitsky, A.: Edge-isoperimetric inequalities and influences. Comb. Probab. Comput. 16, 693–712 (2007)

    MATH  MathSciNet  Article  Google Scholar 

  14. 14.

    Federbusch, P.: A partially alternative derivation of a result of Nelson. J. Phys. 10 (1969)

  15. 15.

    Grimmett, G., Kesten, H.: Percolation since Saint-Flour, arXiv:1207.0373

  16. 16.

    Gross , L.: Logarithmic Sobolev inequalities. Am. J. Math. 97 (1975)

  17. 17.

    Howard, C.D.: Models of first-passage percolation. In: Probability on Discrete Structures, pp. 125–173. Encyclopaedia Mathematical Science, vol. 110. Springer, Berlin (2004)

  18. 18.

    Johansson, K.: Shape fluctuations and random matrices. Comm. Math. Phys. 209 (2000)

  19. 19.

    Kardar, K., Parisi, G., Zhang, Y.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56 (1986)

  20. 20.

    Kesten, H.: Aspects of first-passage percolation. In: École d’été de probabilités de Saint-Flour, XIV, pp. 125–264. Lecture Notes in Mathematics, vol. 1180. Springer, Berliln (1984)

  21. 21.

    Kesten, H.: On the speed of convergence in first-passage percolation. Ann. Appl. Probab. 3, 296–338 (1993)

    MATH  MathSciNet  Article  Google Scholar 

  22. 22.

    Lee, S.: The power laws of \(M\) and \(N\) in greedy lattice animals. Stoch. Proc. Appl. 69 (1997)

  23. 23.

    Ledoux, M.: The concentration of measure phenomenon. In: AMS Math Surveys and Monographs (2001)

  24. 24.

    Martin, J.: Linear growth for greedy lattice animals. Stoch. Proc. Appl. 98 (2002)

  25. 25.

    Newman, C.M., Piza, M.S.T.: Divergence of shape fluctuations in two dimensions. Ann. Prob. 23 (1995)

  26. 26.

    Pemantle, R., Peres, Y.: Planar first-passage percolation times are not tight. In: NATO ASI Series C Mathematical and Physical Sciences—Advanced Study Institute, vol. 420, pp. 261–264. Kluwer Academic Publishers, Dordrecht (1994)

  27. 27.

    Rhee, W.T.: On rates of convergence for common subsequences and first passage time. Ann. Appl. Probab. 1 (1995)

  28. 28.

    Rossignol, R.: Threshold for monotone symmetric properties through a logarithmic Sobolev inequality. Ann. Probab. 35 (2005)

  29. 29.

    Sodin, S.: Positive temperature versions of two theorems on first-passage percolation (2013). arXiv:1301.7470

  30. 30.

    Stam, A.: Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inform. Control 2 (1959)

  31. 31.

    Talagrand, M.: Concentration of measure and isoperimetric inequalities in product spaces. Publ. Math. I.H.E.S. 81 (1995)

  32. 32.

    Talagrand, M.: On Russo’s approximate zero–one law. Ann. Prob. 22 (1994)

  33. 33.

    Zhang, Y.: Shape fluctuations are different in different directions. Ann. Prob. 36 (2008)

  34. 34.

    Zhang, Y.: On the concentration and the convergence rate with a moment condition in first passage percolation. Stoch. Proc. Appl. 120 (2010)

  35. 35.

    Zhang, Y.: Double behavior of critical first-passage percolation. In: Perplexing Problems in Probability, pp. 143–158. Progr. Probab., vol. 44. Birkhäuser, Boston (1999)

Download references


We thank S. Sodin for helpful conversations and for pointing out the use of geometric averaging in his paper. We also thank him for careful reading of a previous draft. We are grateful to T. Seppäläinen for pointing out an error in the entropy section and A. Auffinger for finding various typos. Last, we thank an anonymous referee for comments that led to a better organized presentation.

Author information



Corresponding author

Correspondence to Michael Damron.

Additional information

The research of M. D. is supported by NSF Grant DMS-0901534.

The research of J. H. is supported by an NSF graduate research fellowship.

The research of P. S. is supported by an NSERC postgraduate fellowship.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Damron, M., Hanson, J. & Sosoe, P. Sublinear variance in first-passage percolation for general distributions. Probab. Theory Relat. Fields 163, 223–258 (2015).

Download citation

Mathematics Subject Classification

  • Primary 60K35
  • Secondary 60E15