Skip to main content

A Martingale approach to metastability

Abstract

We presented in Beltrán and Landim ( J Stat Phys 140:1065–1114, 2010) Beltrán and Landim (J Stat Phys 149:598–618, 2012) an approach to derive the metastable behavior of continuous-time Markov chains. We assumed in these articles that the Markov chains visit points in the time scale in which it jumps among the metastable sets. We replace this condition here by assumptions on the mixing times and on the relaxation times of the chains reflected at the boundary of the metastable sets.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Beltrán, J., Landim, C.: Tunneling and metastability of continuous time Markov chains. J. Stat. Phys. 140, 1065–1114 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. 2.

    Beltrán, J., Landim, C.: Metastability of reversible condensed zero range processes on a finite set. Probab. Th. Rel. Fields 152, 781–807 (2012)

    Article  MATH  Google Scholar 

  3. 3.

    Beltrán, J., Landim, C.: Metastability of reversible finite state Markov processes. Stoch. Proc. Appl. 121, 1633–1677 (2011)

    Article  MATH  Google Scholar 

  4. 4.

    Beltrán, J., Landim, C.: Tunneling of the Kawasaki dynamics at low temperatures in two dimensions. To appear in Ann. Inst. H. Poincaré, Probab. Stat. arXiv:1109.2776 (2014)

  5. 5.

    Beltrán, J., Landim, C.: Tunneling and metastability of continuous time Markov chains II. J. Stat. Phys. 149, 598–618 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. 6.

    Bianchi, A., Bovier, A., Ioffe, D.: Pointwise estimates and exponential laws in metastable systems via coupling methods. Ann. Probab. 40, 339–371 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. 7.

    Bianchi, A., Gaudilliere, A.: Metastable states, quasi-stationary and soft measures, mixing time asymptotics via variational principles. arXiv:1103.1143 (2011)

  8. 8.

    Billingsley, P.: Convergence of probability measures, 2nd Edn. In: Probability and Statistics, pp. X+277. Wiley, NY, ISBN: 0-471-19745-9

  9. 9.

    Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability in stochastic dynamics of disordered mean field models. Probab. Theory Relat. Fields 119, 99–161 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. 10.

    Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability and low lying spectra in reversible Markov chains. Commun. Math. Phys. 228, 219–255 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. 11.

    Caputo, P., Lacoin, H., Martinelli, F., Simenhaus, F., Toninelli, F.L.: Polymer dynamics in the depinned phase: metastability with logarithmic barriers. Probab. Theory Relat. Fields 153, 587–641 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. 12.

    Caputo, P., Martinelli, F., Toninelli, F.L.: On the approach to equilibrium for a polymer with adsorption and repulsion. Elect. J. Probab. 13, 213–258 (2008)

    MATH  MathSciNet  Google Scholar 

  13. 13.

    Cassandro, M., Galves, A., Olivieri, E., Vares, M.E.: Metastable behavior of stochastic dynamics: A pathwise approach. J. Stat. Phys. 35, 603–634 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  14. 14.

    Gaudillière, A.: Condenser physics applied to Markov chains: A brief introduction to potential theory. Online available at http://arxiv.org/abs/0901.3053

  15. 15.

    Gaudillière, A., Landim, C.: A Dirichlet principle for non reversible Markov chains and some recurrence theorems. To appear in . Probab. Theory Relat. Fields. 158, 55–89 (2014) doi:10.1007/s00440-012-0477-5. arXiv:1111.2445

  16. 16.

    Gois, B., Landim, C.: Zero-temperature limit of the Kawasaki dynamics for the Ising lattice gas in a large two-dimensional torus. arXiv:1305.4542 (2013)

  17. 17.

    Jara, M., Landim, C., Teixeira, A.: Quenched scaling limits of trap models. Ann. Probab. 39, 176–223 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. 18.

    Jara, M., Landim, C., Teixeira, A.: Universality of trap models in the ergodic time scale. To appear in Annals of Probability. Online available at http://arxiv.org/abs/1208.5675 (2012)

  19. 19.

    Komorowski, T., Landim, C., Olla, S.: Fluctuations in Markov processes, time symmetry and martingale approximation. Die Grundlehren der mathematischen Wissenschaften 345, Springer, Berlin (2012)

  20. 20.

    Kumagai, T.: Random walks on disordered media and their scaling limits. To appear in Lecture Notes in Math. Springer, Berlin (2013)

  21. 21.

    Lacoin, H., Teixeira, A.: A mathematical perspective on metastable wetting. arXiv:1312.7732

  22. 22.

    Landim, C.: Metastability for a non-reversible dynamics: the evolution of the condensate in totally asymmetric zero range processes. Commun. Math. Phys. arXiv:1204.5987

  23. 23.

    Levin, D.A., Peres, Y., Wilmer, E.L.: Markov chains and mixing times. American Mathematical Society, Providence, RI: With a chapter by James G. Propp and David B, Wilson (2009)

  24. 24.

    Olivieri, E., Vares, M.E.: Large deviations and metastability. Encyclopedia of Mathematics and its Applications, vol. 100. Cambridge University Press, Cambridge (2005)

  25. 25.

    Saloff-Coste, L.: Lectures on finite Markov chains. Lectures on probability theory and statistics (Saint-Flour, 1996), 301–413, Lecture Notes in Math., 1665, Springer, Berlin (1997)

Download references

Acknowledgments

The authors wish to thank A. Gaudillière, M. Jara, H. Lacoin, M. Loulakis and A. Teixeira for stimulating discussions. They also wish to thank the anonymous referee for her/his valuable comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Landim.

Additional information

In memoriam of Hermann Rost.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Beltrán, J., Landim, C. A Martingale approach to metastability. Probab. Theory Relat. Fields 161, 267–307 (2015). https://doi.org/10.1007/s00440-014-0549-9

Download citation

Keywords

  • Metastability
  • Mixing times
  • Markov processes

Mathematics Subject Classification

  • 60J27
  • 82C26
  • 60K35