Probability Theory and Related Fields

, Volume 160, Issue 3–4, pp 429–487 | Cite as

Asymptotics of random lozenge tilings via Gelfand–Tsetlin schemes

  • Leonid PetrovEmail author


A Gelfand–Tsetlin scheme of depth \(N\) is a triangular array with \(m\) integers at level \(m\), \(m=1,\ldots ,N\), subject to certain interlacing constraints. We study the ensemble of uniformly random Gelfand–Tsetlin schemes with arbitrary fixed \(N\)th row. We obtain an explicit double contour integral expression for the determinantal correlation kernel of this ensemble (and also of its \(q\)-deformation). This provides new tools for asymptotic analysis of uniformly random lozenge tilings of polygons on the triangular lattice; or, equivalently, of random stepped surfaces. We work with a class of polygons which allows arbitrarily large number of sides. We show that the local limit behavior of random tilings (as all dimensions of the polygon grow) is directed by ergodic translation invariant Gibbs measures. The slopes of these measures coincide with the ones of tangent planes to the corresponding limit shapes described by Kenyon and Okounkov (Acta Math 199(2):263–302, 2007). We also prove that at the edge of the limit shape, the asymptotic behavior of random tilings is given by the Airy process. In particular, our results cover the most investigated case of random boxed plane partitions (when the polygon is a hexagon).

Mathematics Subject Classification

60C05 60G55 82C22 



The author would like to thank Alexei Borodin for fruitful discussions, and Vadim Gorin for helpful comments. I am also grateful to the anonymous referee for remarks which helped to improve the presentation. The work was partially supported by the RFBR-CNRS grants 10-01-93114 and 11-01-93105.


  1. 1.
    Breuer, J., Duits, M.: Nonintersecting paths with a staircase initial condition (2011). arXiv:1105.0388 [math.PR]Google Scholar
  2. 2.
    Borodin, A., Ferrari, P.: Large time asymptotics of growth models on space-like paths I: PushASEP. Electron. J. Probab. 13, 1380–1418 (2008) arXiv:0707.2813 [math-ph]Google Scholar
  3. 3.
    Borodin, A., Ferrari, P.L.: Anisotropic growth of random surfaces in 2+1 dimensions (2008). arXiv:0804.3035 [math-ph]Google Scholar
  4. 4.
    Borodin, A., Ferrari, P., Prähofer, M., Sasamoto, T.: Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129(5–6), 1055–1080 (2007). arXiv:math-ph/0608056CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Borodin, A., Gorin, V.: Shuffling algorithm for boxed plane partitions. Adv. Math. 220(6), 1739–1770 (2009). arXiv:0804.3071 [math.CO]Google Scholar
  6. 6.
    Borodin, A., Gorin, V., Rains, E.: q-Distributions on boxed plane partitions. Selecta Math. New Ser. 16(4), 731–789 (2010). arXiv:0905.0679 [math-ph]Google Scholar
  7. 7.
    Borodin, A., Kuan, J.: Asymptotics of Plancherel measures for the infinite-dimensional unitary group. Adv. Math. 219(3), 894–931 (2008). arXiv:0712.1848 [math.RT]Google Scholar
  8. 8.
    Baik, J., Kriecherbauer, T., McLaughlin, K.T.-R., Miller, P.D.: Discrete orthogonal polynomials: asymptotics and applications. In: Annals of Mathematics Studies. Princeton University Press, Princeton (2007). arXiv:math/0310278 [math.CA]Google Scholar
  9. 9.
    Boutillier, C., Mkrtchyan, S., Reshetikhin, N., Tingley, P.: Random skew plane partitions with a piecewise periodic back wall. In: Annales Henri Poincare (2011). arXiv:0912.3968 [math-ph]Google Scholar
  10. 10.
    Borodin, A., Olshanski, G.: The boundary of the Gelfand-Tsetlin graph: a new approach. Adv. Math. 230, 1738–1779 (2012). arXiv:1109.1412 [math.CO]Google Scholar
  11. 11.
    Borodin, A., Okounkov, A., Olshanski, G.: Asymptotics of Plancherel measures for symmetric groups. J. Am. Math. Soc. 13(3), 481–515 (2000). arXiv:math/9905032 [math.CO]Google Scholar
  12. 12.
    Borodin, A.: Determinantal point processes. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) Oxford Handbook of Random Matrix Theory. Oxford University Press, Oxford (2011). arXiv:0911.1153 [math.PR]Google Scholar
  13. 13.
    Cohn, H., Kenyon, R., Propp, J.: A variational principle for domino tilings. J. AMS 14(2), 297–346 (2001). arXiv:math/0008220 [math.CO]Google Scholar
  14. 14.
    Cohn, H., Larsen, M., Propp, J.: The shape of a typical boxed plane partition. New York J. Math. 4, 137–165 (1998). arXiv:math/9801059 [math.CO]Google Scholar
  15. 15.
    Destainville, N.: Entropy and boundary conditions in random rhombus tilings. J. Phys. A Math. Gen. 31, 6123–6139 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Destainville, N., Mosseri, R., Bailly, F.: Configurational entropy of codimension-one tilings and directed membranes. J. Stat. Phys. 87(3/4), 697–754 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Erdélyi, A. (ed.): Higher Transcendental Functions. McGraw-Hill, New York (1953)Google Scholar
  18. 18.
    Forrester, P.J., Nordenstam, E.: The anti-symmetric GUE minor process. Moscow Math. J. 9(4), 749–774 (2009). arXiv:0804.3293 [math.PR]Google Scholar
  19. 19.
    Ferrari, P.L., Spohn, H.: Step fluctuations for a faceted crystal. J. Stat. Phys. 113(1), 1–46 (2003). arXiv:cond-mat/0212456 [cond-mat.stat-mech]Google Scholar
  20. 20.
    Gorin, V.: Nonintersecting paths and the Hahn orthogonal polynomial ensemble. Funct. Anal. Appl. 42 (3), 180–197 (2008). arXiv:0708.2349 [math.PR]Google Scholar
  21. 21.
    Gould, H.W.: The \(q\)-Stirling numbers of first and second kinds. Duke Math. J. 28, 281–289 (1961)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Determinantal processes and independence. Probab. Surv. 3, 206–229 (2006). arXiv:math/0503110 [math.PR]Google Scholar
  23. 23.
    Johansson, K., Nordenstam, E.: Eigenvalues of GUE minors. Electron. J. Probab. 11(50), 1342–1371 (2006). arXiv:math/0606760 [math.PR]Google Scholar
  24. 24.
    Johansson, K.:Non-intersecting paths, random tilings and random matrices. Probab. Theory Relat. Fields 123(2), 225–280 (2002). arXiv:math/0011250 [math.PR]Google Scholar
  25. 25.
    Johansson, K.: Non-intersecting, simple, symmetric random walks and the extended Hahn kernel. Annales de l’Institut Fourier (Grenoble) 55(6), 2129–2145 (2005). arXiv:math/0409013 [math.PR]Google Scholar
  26. 26.
    Kasteleyn, P.: Graph theory and crystal physics, pp. 43–110. Graph Theory and Theoretical Physics. Academic Press, London (1967)Google Scholar
  27. 27.
    Kenyon, R.: Local statistics of lattice dimers. Annales de Inst. H. Poincaré. Probabilités et Statistiques 33, 591–618 (1997). arXiv:math/0105054 [math.CO]Google Scholar
  28. 28.
    Kenyon, R.: Height fluctuations in the honeycomb dimer model. Commun. Math. Phys. 281(3), 675–709 (2008). arXiv:math-ph/0405052CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Kenyon, R.: Lectures on dimers. arXiv:0910.3129 [math.PR].
  30. 30.
    Kenyon, R., Okounkov, A.: Limit shapes and the complex Burgers equation. Acta Math. 199(2), 263–302 (2007). arXiv:math-ph/0507007CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Kenyon, R., Okounkov, A., Sheffield, S.: Dimers and amoebae. Ann. Math. 163, 1019–1056 (2006). arXiv:math-ph/0311005.Google Scholar
  32. 32.
    Macdonald, I.G.: Symmetric functions and Hall polynomials, 2nd edn. Oxford University Press, Oxford (1995)zbMATHGoogle Scholar
  33. 33.
    Metcalfe, A.: Universality properties of Gelfand-Tsetlin patterns. arXiv:1105.1272 [math.PR]Google Scholar
  34. 34.
    Nordenstam, E., Young, B.: Domino shuffling on Novak half-hexagons and Aztec half-diamonds. Electron. J. Combin. 18(1), P181 (2011). arXiv:1103.5054 [math.CO]Google Scholar
  35. 35.
    Okounkov, A.: Correlations for the Novak process. arXiv:1201.4138 [math.CO]Google Scholar
  36. 36.
    Okounkov, A.: Symmetric functions and random partitions. In: Fomin, S. (ed.) Symmetric Functions 2001: Surveys of Developments and Perspectives. Kluwer, Dordrecht (2002). arXiv:math/0309074 [math.CO]Google Scholar
  37. 37.
    Okounkov, A., Reshetikhin, N.: Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. J. Am. Math. Soc. 16(3), 581–603 (2003). arXiv:math/0107056 [math.CO]Google Scholar
  38. 38.
    Okounkov, A., Reshetikhin, N.Y.: The birth of a random matrix. Moscow Math. J. 6(3), 553–566 (2006)zbMATHMathSciNetGoogle Scholar
  39. 39.
    Okounkov, A., Reshetikhin, N.: Random skew plane partitions and the Pearcey process. Commun. Math. Phys. 269(3), 571–609 (2007). arXiv:math/0503508 [math.CO]Google Scholar
  40. 40.
    Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108, 1071–1106 (2002). arXiv:math.PR/0105240Google Scholar
  41. 41.
    Sheffield, S.: Random surfaces, Astérisque 304 (2005). arXiv:math/0304049 [math.PR]Google Scholar
  42. 42.
    Soshnikov, A.: Determinantal random point fields. Russ. Math. Surv. 55(5), 923–975 (2000). arXiv:math/0002099 [math.PR]Google Scholar
  43. 43.
    Stanley, R.: Enumerative Combinatorics, vol. 2. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. Cambridge University Press, Cambridge (2001)Google Scholar
  44. 44.
    Weyl, H.: The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton (1997)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of MathematicsNortheastern UniversityBostonUSA
  2. 2.Dobrushin Mathematics LaboratoryKharkevich Institute for Information Transmission ProblemsMoscowRussia

Personalised recommendations