Probability Theory and Related Fields

, Volume 156, Issue 3–4, pp 707–737 | Cite as

The restricted isometry property for time–frequency structured random matrices

  • Götz E. Pfander
  • Holger RauhutEmail author
  • Joel A. Tropp


This paper establishes the restricted isometry property for a Gabor system generated by n 2 time–frequency shifts of a random window function in n dimensions. The sth order restricted isometry constant of the associated n × n 2 Gabor synthesis matrix is small provided that sc n 2/3 / log2 n. This bound provides a qualitative improvement over previous estimates, which achieve only quadratic scaling of the sparsity s with respect to n. The proof depends on an estimate for the expected supremum of a second-order chaos.


Compressed sensing Restricted isometry property Gabor system Time–frequency analysis Random matrix Chaos process 

Mathematics Subject Classification (2000)

60B20 42C40 94A12 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alltop W.O.: Complex sequences with low periodic correlations. IEEE Trans. Inf. Theory 26(3), 350–354 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Azais J.-M., Wschebor M.: Level Sets and Extrema of Random Processes and Fields. Wiley, New York (2009)zbMATHCrossRefGoogle Scholar
  3. 3.
    Baraniuk R.G., Davenport M., De Vore R.A., Wakin M.: A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28(3), 253–263 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bello P.A.: Characterization of randomly time-variant linear channels. IEEE Trans. Commun. 11, 360–393 (1963)CrossRefGoogle Scholar
  5. 5.
    Boucheron S., Lugosi G., Massart P.: Concentration inequalities using the entropy method. Ann. Probab. 31(3), 1583–1614 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Buchholz A.: Operator Khintchine inequality in non-commutative probability. Math. Ann. 319, 1–16 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Candès, E.J.: Compressive sampling. Proceedings of the International Congress of Mathematicians. Madrid, Spain (2006)Google Scholar
  8. 8.
    Candès E.J., Tao J.T., Romberg J.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)zbMATHCrossRefGoogle Scholar
  9. 9.
    Candès E.J., Romberg J., Tao T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)zbMATHCrossRefGoogle Scholar
  10. 10.
    Candès E.J., Tao T.: Near optimal signal recovery from random projections: universal encoding strategies?. IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)CrossRefGoogle Scholar
  11. 11.
    Carl B.: Inequalities of Bernstein–Jackson-type and the degree of compactness of operators in Banach spaces. Ann. Inst. Fourier (Grenoble) 35(3), 79–118 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Chiu J., Demanet L.: Matrix probing and its conditioning. SIAM J. Numer. Anal. 50(1), 171–193 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Christensen O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Birkhäuser Boston Inc., Boston (2003)Google Scholar
  14. 14.
    Correia L.M.: Wireless Flexible Personalized Communications. Wiley, New York (2001)Google Scholar
  15. 15.
    de la Peña V., Giné E.: Decoupling. From Dependence to Independence. Probability and its Applications. Springer, New York (1999)Google Scholar
  16. 16.
    Donoho D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Donoho D.L., Tanner J.: Counting faces of randomly-projected polytopes when the projection radically lowers dimension. J. Am. Math. Soc. 22(1), 1–53 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Fornasier, M., Rauhut, H.: Compressive sensing. In: Scherzer, O. (ed.) Handbook of Mathematical Methods in Imaging, pp. 187–228. Springer, Berlin (2011)Google Scholar
  19. 19.
    Foucart S., Pajor A., Rauhut H., Ullrich T.: The Gelfand widths of ℓp-balls for 0 < p ≤ 1. J. Complex. 26(6), 629–640 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Grip N., Pfander G.: A discrete model for the efficient analysis of time-varying narrowband communication channels. Multidim. Syst. Signal Process. 19(1), 3–40 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Gröchenig K.: Foundations of Time–Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2001)Google Scholar
  22. 22.
    Haupt J., Bajwa W., Raz G., Nowak R.: Toeplitz compressed sensing matrices with applications to sparse channel estimation. IEEE Trans. Inf. Theory 56(11), 5862–5875 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Herman M., Strohmer T.: High-resolution radar via compressed sensing. IEEE Trans. Signal Process. 57(6), 2275–2284 (2009)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Krahmer F., Pfander G.E., Rashkov P.: Uncertainty in time–frequency representations on finite abelian groups and applications. Appl. Comput. Harmon. Anal. 25(2), 209–225 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Lawrence J., Pfander G., Walnut D.: Linear independence of Gabor systems in finite dimensional vector spaces. J. Fourier Anal. Appl. 11(6), 715–726 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Ledoux M., Talagrand M.: Probability in Banach spaces. Springer, Berlin (1991)zbMATHCrossRefGoogle Scholar
  27. 27.
    Middleton D.: Channel modeling and threshold signal processing in underwater acoustics: an analytical overview. IEEE J. Ocean. Eng. 12(1), 4–28 (1987)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Pätzold M.: Mobile Fading Channels: Modelling, Analysis and Simulation. Wiley, New York (2001)Google Scholar
  29. 29.
    Pfander G., Rauhut H.: Sparsity in time–frequency representations. J. Fourier Anal. Appl. 16(2), 233–260 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Pfander G.E., Rauhut H., Tanner J.: Identification of matrices having a sparse representation. IEEE Trans. Signal Process. 56(11), 5376–5388 (2008)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Rauhut H.: Stability results for random sampling of sparse trigonometric polynomials. IEEE Trans. Inf. Theory 54(12), 5661–5670 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Rauhut, H.: Circulant and Toeplitz matrices in compressed sensing. In: Proceedings of SPARS’09 (2009)Google Scholar
  33. 33.
    Rauhut, H.: Compressive Sensing and Structured Random Matrices. In: Fornasier, M. (ed.) Theoretical Foundations and Numerical Methods for Sparse Recovery. Radon Series Comp. Appl. Math., vol. 9, pp. 1–92. deGruyter, Berlin (2010)Google Scholar
  34. 34.
    Rauhut H., Pfander G.E.: Sparsity in time–frequency representations. J. Fourier Anal. Appl. 16(2), 233–260 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Rauhut, H., Romberg, J., Tropp, J.: Restricted isometries for partial random circulant matrices. Appl. Comput. Harmonic Anal. 32(2), 242–254 (2012). doi: 10.1016/j.acha.2011.05.001 Google Scholar
  36. 36.
    Rauhut H., Schnass K., Vandergheynst P.: Compressed sensing and redundant dictionaries. IEEE Trans. Inf. Theory 54(5), 2210–2219 (2008)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Rauhut, H., Ward, R.: Sparse Legendre expansions via l 1-minimization. J. Approx. Theory 164(5), 517–533 (2012)Google Scholar
  38. 38.
    Rudelson M., Vershynin R.: On sparse reconstruction from Fourier and Gaussian measurements. Commun. Pure Appl. Math. 61, 1025–1045 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Stojanovic, M.: Underwater acoustic communications. In: Webster, J.G. (ed.) Encyclopedia of Electrical and Electronics Engineering, vol. 22, pp. 688–698. Wiley, New York (1999)Google Scholar
  40. 40.
    Strohmer T., Heath R.W.J.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14(3), 257–275 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Talagrand M.: New concentration inequalities in product spaces. Invent. Math. 126(3), 505–563 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Talagrand M.: The Generic Chaining. Springer Monographs in Mathematics. Springer, Berlin (2005)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Götz E. Pfander
    • 1
  • Holger Rauhut
    • 2
    Email author
  • Joel A. Tropp
    • 3
  1. 1.School of Engineering and ScienceJacobs University BremenBremenGermany
  2. 2.Hausdorff Center for Mathematics and Institute for Numerical SimulationUniversity of BonnBonnGermany
  3. 3.California Institute of TechnologyPasadenaUSA

Personalised recommendations