Skip to main content

Mobile geometric graphs: detection, coverage and percolation

Abstract

We consider the following dynamic Boolean model introduced by van den Berg et al. (Stoch. Process. Appl. 69:247–257, 1997). At time 0, let the nodes of the graph be a Poisson point process in \({\mathbb{R}^d}\) with constant intensity and let each node move independently according to Brownian motion. At any time t, we put an edge between every pair of nodes whose distance is at most r. We study three fundamental problems in this model: detection (the time until a target point—fixed or moving—is within distance r of some node of the graph); coverage (the time until all points inside a finite box are detected by the graph); and percolation (the time until a given node belongs to the infinite connected component of the graph). We obtain precise asymptotics for these quantities by combining ideas from stochastic geometry, coupling and multi-scale analysis.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Alon N., Spencer J.H.: The Probabilistic Method, 3rd edn. Wiley, New York (2008)

    MATH  Book  Google Scholar 

  2. 2

    Berezhovskii A.M., Makhovskii Yu.A., Suris R.A.: Wiener sausage volume moments. J. Stat. Phys. 57, 333–346 (1989)

    Article  Google Scholar 

  3. 3

    van den Berg J., Meester R., White D.G.: Dynamic boolean model. Stoch. Process. Appl. 69, 247–257 (1997)

    MATH  Article  Google Scholar 

  4. 4

    Ciesielski Z., Taylor S.J.: First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Am. Math. Soc. 103, 434–450 (1962)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5

    Clementi, A., Pasquale, F., Silvestri, R.: MANETS: high mobility can make up for low transmission power. In: Proceedings of the 36th International Colloquium on Automata, Languages and Programming (ICALP) (2009)

  6. 6

    Drewitz, A., Gärtner, J., Ramírez, A.F., Sun, R.: Survival probability of a random walk among a poisson system of moving traps (2010). arXiv:1010.3958v1

  7. 7

    Gupta, P., Kumar, P.R.: Critical power for asymptotic connectivity in wireless networks. In: McEneany, W.M., Yin, G., Zhang, Q. (eds.) Stochastic Analysis, Control, Optimization and Applications: A Volume in Honor of W.H. Fleming, pp. 547–566. Birkhäuser, Boston (1998)

  8. 8

    Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Transactions on Information Theory, 46, 388–404 (2000) [correction in IEEE Transactions on Information Theory 49, p. 3117 (2000)]

    Google Scholar 

  9. 9

    Kesidis, G., Konstantopoulos, T., Phoha, S.: Surveillance coverage of sensor networks under a random mobility strategy. In: Proceedings of the 2nd IEEE International Conference on Sensors (2003)

  10. 10

    Kesten H., Sidoravicius V.: The spread of a rumor or infection in a moving population. Ann. Probab. 33, 2402–2462 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11

    Konstantopoulos, T.: Response to Prof. Baccelli’s lecture on modelling of wireless communication networks by stochastic geometry. Comput. J. Adv. Access (2009)

  12. 12

    Lam, H., Liu, Z., Mitzenmacher, M., Sun, X., Wang, Y.: Information dissemination via random walks in d-dimensional space (2011). arXiv:1104.5268

  13. 13

    Liu, B., Brass, P., Dousse, O., Nain, P., Towsley, D.: Mobility improves coverage of sensor networks. In: Proceedings of the 6th ACM International Conference on Mobile Computing and Networking (MobiCom) (2005)

  14. 14

    Mattila P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge (1995)

    MATH  Book  Google Scholar 

  15. 15

    Meester R., Roy R.: Continuum Percolation. Cambridge University Press, Cambridge (1996)

    MATH  Book  Google Scholar 

  16. 16

    Moreau, M., Oshanin, G., Bénichou, O., Coppey, M.: Lattice theory of trapping reactions with mobile species. Phys. Rev. E 69 (2004)

  17. 17

    Mörters P., Peres Y.: Brownian Motion. Cambridge University Press, Cambridge (2010)

    MATH  Book  Google Scholar 

  18. 18

    Penrose M.: The longest edge of the random minimal spanning tree. Ann. Appl. Probab. 7, 340–361 (1997)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19

    Penrose M.: On k-connectivity for a geometric random graph. Random Struct. Algorithms 15, 145–164 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20

    Penrose M.: Random Geometric Graphs. Oxford University Press, Oxford (2003)

    MATH  Book  Google Scholar 

  21. 21

    Penrose M., Pisztora A.: Large deviations for discrete and continuous percolation. Adv. Appl. Probab. 28, 29–52 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22

    Pettarin, A., Pietracaprina, A., Pucci, G., Upfal, E.: Infectious random walks (2010). arXiv:1007.1604

  23. 23

    Sinclair, A., Stauffer, A.: Mobile geometric graphs, and detection and communication problems in mobile wireless networks (2010). arXiv:1005.1117v1

  24. 24

    Spitzer F.: Electrostatic capacity, heat flow, and Brownian motion. Z. Wahrscheinlichkeitstheorie verw. Geb. 3, 110–121 (1964)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25

    Stoyan D., Kendall W.S., Mecke J.: Stochastic Geometry and its Applications, 2nd edn. Wiley, New York (1995)

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Perla Sousi.

Additional information

A. Sinclair research supported in part by NSF grant CCF-0635153 and by a UC Berkeley Chancellor’s Professorship.

A. Stauffer research supported by a Fulbright/CAPES scholarship and NSF grants CCF-0635153 and DMS-0528488. Part of this work was done while the author was doing a summer internship at Microsoft Research, Redmond, WA.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peres, Y., Sinclair, A., Sousi, P. et al. Mobile geometric graphs: detection, coverage and percolation. Probab. Theory Relat. Fields 156, 273–305 (2013). https://doi.org/10.1007/s00440-012-0428-1

Download citation

Keywords

  • Poisson point process
  • Brownian motion
  • Coupling
  • Minkowski dimension

Mathematics Subject Classification

  • Primary 82C43
  • Secondary 60G55
  • 60D05
  • 60J65
  • 60K35
  • 82C21