Probability Theory and Related Fields

, Volume 156, Issue 1–2, pp 75–99 | Cite as

Improved mixing condition on the grid for counting and sampling independent sets

  • Ricardo Restrepo
  • Jinwoo Shin
  • Prasad Tetali
  • Eric Vigoda
  • Linji Yang


The hard-core model has received much attention in the past couple of decades as a lattice gas model with hard constraints in statistical physics, a multicast model of calls in communication networks, and as a weighted independent set problem in combinatorics, probability and theoretical computer science. In this model, each independent set I in a graph G is weighted proportionally to λ|I|, for a positive real parameter λ. For large λ, computing the partition function (namely, the normalizing constant which makes the weighting a probability distribution on a finite graph) on graphs of maximum degree Δ ≥ 3, is a well known computationally challenging problem. More concretely, let \({\lambda_c(\mathbb{T}_\Delta)}\) denote the critical value for the so-called uniqueness threshold of the hard-core model on the infinite Δ-regular tree; recent breakthrough results of Weitz (Proceedings of the 38th Annual ACM Symposium on Theory of Computing (STOC), pp. 140–149, 2006) and Sly (Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 287–296, 2010) have identified \({\lambda_c(\mathbb{T}_\Delta)}\) as a threshold where the hardness of estimating the above partition function undergoes a computational transition. We focus on the well-studied particular case of the square lattice \({\mathbb{Z}^2}\) , and provide a new lower bound for the uniqueness threshold, in particular taking it well above \({\lambda_c(\mathbb{T}_4)}\) . Our technique refines and builds on the tree of self-avoiding walks approach of Weitz, resulting in a new technical sufficient criterion (of wider applicability) for establishing strong spatial mixing (and hence uniqueness) for the hard-core model. Our new criterion achieves better bounds on strong spatial mixing when the graph has extra structure, improving upon what can be achieved by just using the maximum degree. Applying our technique to \({\mathbb{Z}^2}\) we prove that strong spatial mixing holds for all λ < 2.3882, improving upon the work of Weitz that held for λ < 27/16 = 1.6875. Our results imply a fully-polynomial deterministic approximation algorithm for estimating the partition function, as well as rapid mixing of the associated Glauber dynamics to sample from the hard-core distribution.


Lattice gas Gibbs measures Phase transition Approximation algorithm Glauber dynamics 

Mathematics Subject Classification

82B20 68Q25 60J10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

440_2012_421_MOESM1_ESM.xls (105 kb)
ESM 1 (XLS 105 kb)
440_2012_421_MOESM2_ESM.txt (4 kb)
ESM 2 (TXT 5 kb)
440_2012_421_MOESM3_ESM.txt (33 kb)
ESM 3 (TXT 33 kb)


  1. 1.
    Alm S.E.: Upper bounds for the connective constant of self-avoiding walks. Combin. Probab. Comput. 4(2), 115–136 (1993)MathSciNetGoogle Scholar
  2. 2.
    Arnon, D.S., Collins, G.E., McCallum, S.: Cylindrical algebraic decomposition I: the basic algorithm. SIAM J. Comput. 865–877 (1984)Google Scholar
  3. 3.
    Baxter R.J., Enting I.G., Tsang S.K.: Hard-square lattice gas. J. Stat. Phys. 22(4), 465–489 (1980)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Beffara, V., Duminil-Copin, H.: The self-dual point of the two-dimensional random cluster model is critical for q ≥ 1. Probab. Theory Relat. Fields. Preprint available from the arXiv at:
  5. 5.
    van den Berg J., Ermakov A.: A new lower bound for the critical probability of site percolation on the square lattice. Random Struct. Algorithms 8(3), 199–212 (1996)MATHCrossRefGoogle Scholar
  6. 6.
    van den Berg J., Steif J.E.: Percolation and the hard-core lattice gas model. Stochastic Processes Appl. 49(2), 179–197 (1994)MATHCrossRefGoogle Scholar
  7. 7.
    Brightwell G.R., Häggström O., Winkler P.: Nonmonotonic behavior in hard-core and Widom–Rowlinson models. J. Stat. Phys. 94(3), 415–435 (1999)MATHCrossRefGoogle Scholar
  8. 8.
    Cesi F.: Quasi–factorization of the entropy and logarithmic Sobolev inequalities for Gibbs random fields. Probab. Theory Relat. Fields 120(4), 569–584 (2001)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Dobrushin R.L.: The problem of uniqueness of a Gibbsian random field and the problem of phase transitions. Funct. Anal. Appl. 2(4), 302–312 (1968)MATHCrossRefGoogle Scholar
  10. 10.
    Dobrushin R.L., Shlosman S.B.: Constructive unicity criterion. In: Fritz, J., Jaffe, A., Szasz, D. (eds) Statistical Mechanics and Dynamical Systems, pp. 347–370. Birkhäuser, New York (1985)Google Scholar
  11. 11.
    Dyer M.E., Sinclair A., Vigoda E., Weitz D.: Mixing in time and space for lattice spin systems: a combinatorial view. Random Struct. Algorithms 24(4), 461–479 (2004)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Galanis, A., Ge, Q., Štefankovič, D., Vigoda, E., Yang, L.: Improved inapproximability results for counting independent sets in the hard-core model. In: Proocedings of the 15th International Workshop, RANDOM, pp. 567–578 (2011)Google Scholar
  13. 13.
    Gaunt D.S., Fisher M.E.: Hard-sphere lattice gases. I. Plane-square lattice. J. Chem. Phys. 43(8), 2840–2863 (1965)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Georgii H.-O.: Gibbs Measures and Phase Transitions. de Gruyter, Berlin (1988)MATHCrossRefGoogle Scholar
  15. 15.
    Goldberg L., Martin R., Paterson M.: Strong spatial mixing for lattice graphs with fewer colours. SIAM J. Comput. 35(2), 486–517 (2005)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Greenhill C.: The complexity of counting colourings and independent sets in sparse graphs and hypergraphs. Comput. Complex. 9(1), 52–72 (2000)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Jerrum M.R., Valiant L.G., Vazirani V.V.: Random generation of combinatorial structures from a uniform distribution distribution. Theor. Comput. Sci. 43(2-3), 169–186 (1986)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Kelly F.P.: Loss networks. Ann. Appl. Probab. 1(3), 319–378 (1991)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Levin D.A., Peres Y., Wilmer E.L.: Markov Chains and Mixing Times. American Mathematical Society, Providence (2008)Google Scholar
  20. 20.
    Lyons R.: The Ising model and percolation on trees and tree-like graphs. Commun. Math. Phys. 125(2), 337–353 (1989)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Martinelli, F.: Lectures on Glauber dynamics for discrete spin models. In: Lectures on Probability Theory and Statistics (Saint-Flour, 1997), Lecture Notes in Mathematics, vol. 1717, pp. 93–191 (1998)Google Scholar
  22. 22.
    Martinelli F., Olivieri E.: Approach to equilibrium of Glauber dynamics in the one phase region. I. The attractive case. Commun. Math. Phys. 161(3), 447–486 (1994)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Martinelli F., Olivieri E.: Approach to equilibrium of Glauber dynamics in the one phase region. II. The general case. Commun. Math. Phys. 161(3), 487–514 (1994)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Onsager L.: Crystal statistics. I. A two-dimensional model with an order–disorder transition. Phys. Rev. Lett. 65(3–4), 117–149 (1944)MathSciNetMATHGoogle Scholar
  25. 25.
    Pönitz A., Tittman P.: Improved upper bounds for self-avoiding walks in \({\mathbb{Z}^d}\) . Electr. J. Combin. 7(1), R21 (2000)Google Scholar
  26. 26.
    Rácz Z.: Phase boundary of Ising antiferromagnets near HH c and T = 0: results from hard-core lattice gas calculations. Phys. Rev. B 21(9), 4012–4016 (1980)CrossRefGoogle Scholar
  27. 27.
    Radulescu, D.C.: A computer-assisted proof of uniqueness of phase for the hard-square lattice gas model in two dimensions. PhD dissertation, Rutgers University, New Brunswick, NJ, USA (1997)Google Scholar
  28. 28.
    Radulescu D.C., Styer D.F.: The Dobrushin–Shlosman phase uniqueness criterion and applications to hard squares. J. Stat. Phys. 49(1–2), 281–295 (1987)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Randall, D.: Slow mixing of Glauber dynamics via topological obstructions. In: Proceedings of the 17th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA), pp. 870–879 (2006)Google Scholar
  30. 30.
    Sly, A.: Computational transition at the uniqueness threshold. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 287–296 (2010)Google Scholar
  31. 31.
    Štefankovič D., Vempala S., Vigoda E.: Adaptive simulated annealing: a near-optimal connection between sampling and counting. J. ACM 56(3), 1–36 (2009)MathSciNetGoogle Scholar
  32. 32.
    Tarski A.: A decision method for elementary algebra and geometry, 2nd edn. University of California Press, California (1951)Google Scholar
  33. 33.
    Valiant L.G.: The complexity of enumeration and reliability problems. SIAM J. Comput. 8(3), 410–421 (1979)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Weitz, D.: Counting independent sets up to the tree threshold. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing (STOC), pp. 140–149 (2006)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ricardo Restrepo
    • 1
  • Jinwoo Shin
    • 2
  • Prasad Tetali
    • 3
  • Eric Vigoda
    • 2
  • Linji Yang
    • 2
  1. 1.Universidad de AntioquiaMedellinColombia
  2. 2.School of Computer ScienceGeorgia Institute of TechnologyAtlantaUSA
  3. 3.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations