Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Probability Theory and Related Fields
  3. Article
On the existence and position of the farthest peaks of a family of stochastic heat and wave equations
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

On the density of the supremum of the solution to the linear stochastic heat equation

23 September 2019

Robert C. Dalang & Fei Pu

Gaussian fluctuations of a nonlinear stochastic heat equation in dimension two

23 December 2022

Ran Tao

Some Recent Progress on Stochastic Heat Equations

30 May 2019

Yaozhong Hu

Central limit theorems for stochastic wave equations in dimensions one and two

16 August 2021

David Nualart & Guangqu Zheng

Precise Moment Asymptotics for the Stochastic Heat Equation of a Time-Derivative Gaussian Noise

30 May 2019

Heyu Li & Xia Chen

Gaussian fluctuations for the stochastic heat equation with colored noise

13 July 2019

Jingyu Huang, David Nualart, … Guangqu Zheng

Path properties of the solution to the stochastic heat equation with Lévy noise

17 August 2018

Carsten Chong, Robert C. Dalang & Thomas Humeau

Central limit theorems for spatial averages of the stochastic heat equation via Malliavin–Stein’s method

26 November 2021

Le Chen, Davar Khoshnevisan, … Fei Pu

The hyperbolic Anderson model: moment estimates of the Malliavin derivatives and applications

18 January 2022

Raluca M. Balan, David Nualart, … Guangqu Zheng

Download PDF
  • Published: 03 December 2010

On the existence and position of the farthest peaks of a family of stochastic heat and wave equations

  • Daniel Conus1 &
  • Davar Khoshnevisan1 

Probability Theory and Related Fields volume 152, pages 681–701 (2012)Cite this article

  • 339 Accesses

  • 27 Citations

  • Metrics details

Abstract

We study the stochastic heat equation \({\partial_t u = \mathcal{L}u+\sigma(u)\dot W}\) in (1 + 1) dimensions, where \({\dot W}\) is space-time white noise, σ : R → R is Lipschitz continuous, and \({\mathcal{L}}\) is the generator of a symmetric Lévy process that has finite exponential moments, and u 0 has exponential decay at ±∞. We prove that under natural conditions on σ : (i) The νth absolute moment of the solution to our stochastic heat equation grows exponentially with time; and (ii) The distances to the origin of the farthest high peaks of those moments grow exactly linearly with time. Very little else seems to be known about the location of the high peaks of the solution to the stochastic heat equation under the present setting (see, however, Gärtner et al. in Probab Theory Relat Fields 111:17–55, 1998; Gärtner et al. in Ann Probab 35:439–499, 2007 for the analysis of the location of the peaks in a different model). Finally, we show that these results extend to the stochastic wave equation driven by Laplacian.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Bertini L., Cancrini N.: The stochastic heat equation: Feynman–Kac formula and intermittence. J. Stat. Phys. 78(5/6), 1377–1402 (1994)

    MathSciNet  Google Scholar 

  2. Burkholder D.L.: Martingale transforms. Ann. Math. Stat. 37, 1494–1504 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burkholder, D.L., Davis, B.J., Gundy, R.F.: Integral inequalities for convex functions of operators on martingales, In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol. II, pp. 223–240, University of California Press, Berkeley (1972)

  4. Burkholder D.L., Gundy R.F.: Extrapolation and interpolation of quasi-linear operators on martingales. Acta. Math. 124, 249–304 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carlen E., Kree P.: L p estimates for multiple stochastic integrals. Ann. Probab. 19(1), 354–368 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carmona R.A., Molchanov S.A.: Parabolic Anderson Problem and Intermittency. Memoirs of the American Mathematical Society, Providence (1994)

    Google Scholar 

  7. Carmona R.A., Nualart D.: Random nonlinear wave equations: propagation of singularities. Ann. Probab. 16(2), 730–751 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chung K.L., Fuchs W.H.J.: On the Distribution of Values of Sums of Random Variables. Memoirs of the American Mathematical Society, Providence (1951)

    Google Scholar 

  9. Conus D., Dalang Robert C.: The non-linear stochastic wave equation in high dimensions. Electron. J. Probab 13(22), 629–670 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Dalang, R.C.: Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.’s, Electron. J. Probab. 4(6), 29 (1999) [Corrections: Electron. J. Probab. 6(6), 5 (2001)]

  11. Dalang R.C., Frangos N.E.: The stochastic wave equation in two spatial dimensions. Ann. Probab. 26(1), 187–212 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dalang R.C., Mueller C.: Some non-linear S.P.D.E.’s that are second order in time. Electron. J. Probab. 8(1), 21 (2003) (electronic)

    MathSciNet  Google Scholar 

  13. Dalang R.C., Mueller C.: Intermittency properties in a hyperbolic Anderson problem. Ann. Inst. Henri Poincaré 45(4), 1150–1164 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Davis B.: On the L p norms of stochastic integrals and other martingales. Duke Math. J. 43(4), 697–704 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dembo A., Zeitouni O.: Large Deviations, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  16. Foondun, M., Khoshnevisan, D.: On the global maximum of the solution to a stochastic heat equation with compact-support initial data. Ann. Inst. Henri Poincaré (2009) (to appear)

  17. Foondun, M., Khoshnevisan D.: Intermittence and nonlinear parabolic stochastic partial differential equations. Electron. J. Probab. 14(14), 548–568

  18. Foondun, M., Khoshnevisan, D., Nualart E.: A local-time correspondence for stochastic partial differential equations. Trans. Am. Math. Soc. (2009) (to appear)

  19. Gärtner J., Molchanov S.: Parabolic problems for the Anderson model. II. Second-order asymptotics and structure of high peaks. Probab. Theory. Relat. Fields 111(1), 17–55 (1998)

    Article  MATH  Google Scholar 

  20. Gärtner J., König W., Molchanov S.: Geometric characterization of intermittency in the parabolic Anderson model. Ann. Probab. 35(2), 439–499 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gyöngy I., Nualart D.: On the stochastic Burgers’ equation in the real line. Ann. Probab. 27(2), 782–802 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Houdré C., Kawai R.: On layered stable processes. Bernoulli 13(1), 252–278 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lunardi A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser- Verlag, Basel (1995)

    Book  MATH  Google Scholar 

  24. Mueller C.: On the support of solutions to the heat equation with noise. Stoch. Stoch. Rep. 37(4), 225–245 (1991)

    MathSciNet  MATH  Google Scholar 

  25. Mueller C., Perkins E.A.: The compact support property for solutions to the heat equation with noise. Probab. Theory. Relat. Fields 93(3), 325–358 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Peszat S., Zabczyk J.: Nonlinear stochastic wave and heat equations. Probab. Theory. Relat. Fields 116(3), 421–443 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Port S.C., Stone C.J.: Infinitely divisible processes and their potential theory II. Ann. Inst. Fourier, Grenoble 21(2), 157–271 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rosiński J.: Tempering stable processes. Stochastic Proc. Appl 117(6), 677–707 (2007)

    Article  MATH  Google Scholar 

  29. Walsh, J.B.: An introduction to stochastic partial differential equations. In: École d’été de Probabilités de Saint-Flour, XIV—1984, Lecture Notes in Mathematics vol. 1180, pp. 265–439. Springer, Berlin (1986)

  30. Zeldovich Y.B., Ruzmaikin A.A., Sokoloff D.D.: The Almighty Chance. World Scientific, Singapore (1990)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Mathematics, University of Utah, 155 S 1400 E, Rm. 233, Salt Lake City, UT, 84112-0090, USA

    Daniel Conus & Davar Khoshnevisan

Authors
  1. Daniel Conus
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Davar Khoshnevisan
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Daniel Conus.

Additional information

Research supported in part by the Swiss National Science Foundation Fellowship PBELP2-122879 (D.C.) and the NSF grant DMS-0706728 (D.K.).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Conus, D., Khoshnevisan, D. On the existence and position of the farthest peaks of a family of stochastic heat and wave equations. Probab. Theory Relat. Fields 152, 681–701 (2012). https://doi.org/10.1007/s00440-010-0333-4

Download citation

  • Received: 15 March 2010

  • Revised: 04 October 2010

  • Published: 03 December 2010

  • Issue Date: April 2012

  • DOI: https://doi.org/10.1007/s00440-010-0333-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Stochastic PDEs
  • Stochastic heat equation
  • Intermittence

Mathematics Subject Classification (2000)

  • Primary 60H15
  • Secondary 35R60
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.239.117.1

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.