Probability Theory and Related Fields

, Volume 152, Issue 3–4, pp 367–406 | Cite as

The continuum limit of critical random graphs

  • L. Addario-BerryEmail author
  • N. Broutin
  • C. Goldschmidt


We consider the Erdős–Rényi random graph G(n, p) inside the critical window, that is when p = 1/n + λn −4/3, for some fixed \({\lambda \in \mathbb{R}}\) . We prove that the sequence of connected components of G(n, p), considered as metric spaces using the graph distance rescaled by n −1/3, converges towards a sequence of continuous compact metric spaces. The result relies on a bijection between graphs and certain marked random walks, and the theory of continuum random trees. Our result gives access to the answers to a great many questions about distances in critical random graphs. In particular, we deduce that the diameter of G(n, p) rescaled by n −1/3 converges in distribution to an absolutely continuous random variable with finite mean.


Random graphs Gromov–Hausdorff distance Scaling limits Continuum random tree Diameter 

Mathematics Subject Classification (2000)

05C80 60C05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Addario-Berry, L., Broutin, N., Reed, B.: The diameter of the minimum spanning tree of a complete graph. In: Proceedings of Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, vol. 2 (2006)Google Scholar
  2. 2.
    Addario-Berry L., Broutin N., Reed B.: Critical random graphs and the structure of a minimum spanning tree. Random Struct. Algorithms 35(3), 323–347 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Addario-Berry L., Broutin N., Goldschmidt C.: Critical random graphs: limiting constructions and distributional properties. Electron. J. Probab. 15, 741–775 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Aldous D.: The continuum random tree I. Ann. Probab. 19(1), 1–28 (1991) ISSN 0091-1798MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Aldous, D.: The continuum random tree II: an overview. In: Stochastic Analysis (Durham, 1990), volume 167 of London Math. Soc. Lecture Note Ser., pp. 23–70. Cambridge University Press, Cambridge (1991)Google Scholar
  6. 6.
    Aldous D.: The continuum random tree III. Ann. Probab. 21(1), 248–289 (1993) ISSN 0091-1798MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Aldous D.: Brownian excursions, critical random graphs and the multiplicative coalescent. Ann. Probab. 25, 812–854 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Aldous D., Pittel B.: On a random graph with immigrating vertices: emergence of the giant component. Random Struct. Algorithms 17, 79–102 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Andersen E.S.: Fluctuations of sums of random variables. Math. Scand. 1, 263–285 (1953)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Billingsley P.: Convergence of Probability Measures. Wiley, New York (1968)zbMATHGoogle Scholar
  11. 11.
    Bollobás, B.: Random graphs, 2nd edn. Cambridge Studies in Advanced Mathematics. Cambridge University Press (2001)Google Scholar
  12. 12.
    Bollobás B.: The evolution of random graphs. Trans. Am. Math. Soc. 286(1), 257–274 (1984)zbMATHCrossRefGoogle Scholar
  13. 13.
    Borel E.: Sur l’emploi du théorème de Bernouilli pour faciliter le calcul d’une infinité de coefficients. Application au problème de l’attente à un guichet. C.R. Math. Acad. Sci. Paris 214, 452–456 (1942)MathSciNetGoogle Scholar
  14. 14.
    Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry, volume 33 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2001)Google Scholar
  15. 15.
    Chung F., Lu L.: The diameter of random sparse graphs. Adv. Appl. Math. 26, 257–279 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Cormen T.H., Leiserson C.E., Rivest R.L., Stein C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)Google Scholar
  17. 17.
    Corneil D.G., Krueger R.M.: A unified view of graph searching. SIAM J. Discrete Math. 22, 1259–1276 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Cox D.R., Isham V.: Point Processes. Chapman & Hall, London (1980)zbMATHGoogle Scholar
  19. 19.
    Ding, J., Kim, J.H., Lubetzky, E., Peres, Y.: Diameters in supercritical random graphs via first passage percolation. arXiv:0906.1840 [math.CO] (2009)Google Scholar
  20. 20.
    Duquesne, T., Le Gall, J.-F.: Random trees, Lévy processes and spatial branching processes. Astérisque 281, vi+147 (2002). ISSN 0303-1179Google Scholar
  21. 21.
    Dwass M.: The total progeny in a branching process and a related random walk. J. Appl. Probab. 6(3), 682–686 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Erdős P., Rényi A.: On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci. 5, 17–61 (1960)Google Scholar
  23. 23.
    Evans, S.N.: Probability and real trees. In: Lecture Notes in Mathematics, vol. 1920. Springer, Berlin (2008). ISBN 978-3-540-74797-0. Lectures from the 35th Summer School on Probability Theory held in Saint-Flour, July 6–23, 2005Google Scholar
  24. 24.
    Flajolet P., Odlyzko A.: The average height of binary trees and other simple trees. J. Comput. System Sci. 25, 171–213 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Flajolet P., Gao Z., Odlyzko A., Richmond B.: The distribution of heights of binary trees and other simple trees. Combin. Probab. Comput. 2, 145–156 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Gessel I., Wang D.-L.: Depth-first search as a combinatorial correspondence. J. Combin. Theory Ser. A 26, 308–313 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Goldschmidt C.: Critical random hypergraphs: the emergence of a giant set of identifiable vertices. Ann. Probab. 33, 1573–1600 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Janson S.: Brownian excursion area, Wright’s constants in graph enumeration, and other Brownian areas. Probab. Surv. 4, 80–145 (2007) ISSN 1549-5787MathSciNetzbMATHGoogle Scholar
  29. 29.
    Janson S., Spencer J.: A point process describing the component sizes in the critical window of the random graph evolution. Combin. Probab. Comput. 16, 631–658 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Janson S., Łuczak T., Ruciński A.: Random Graphs. Wiley, New York (2000)zbMATHCrossRefGoogle Scholar
  31. 31.
    Kallenberg, O.: Foundations of modern probability. In: Probability and its Applications, 2nd edn. Springer Verlag, Berlin (2003)Google Scholar
  32. 32.
    Kennedy D.P.: The distribution of the maximum Brownian excursion. J. Appl. Probab. 13, 371–376 (1976)zbMATHCrossRefGoogle Scholar
  33. 33.
    Khorunzhiy O., Marckert J.-F.: Uniform bounds for exponential moments of maximum of Dyck paths. Electron. Commun. Probab. 14, 327–333 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Kingman, J.F.C. Poisson processes. In: Oxford Studies in Probability, vol. 3. Oxford University Press (1992)Google Scholar
  35. 35.
    Le Gall J.-F.: Random trees and applications. Probab. Surv. 2, 245–311 (2005) ISSN 1549-5787MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Le Gall J.-F.: Random real trees. Ann. Fac. Sci. Toulouse Math. (6) 15(1), 35–62 (2006) ISSN 0240-2963MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Łuczak T.: Component behavior near the critical point of the random graph process. Random Struct. Algorithms 1, 287–310 (1990)zbMATHCrossRefGoogle Scholar
  38. 38.
    Łuczak T.: The number of trees with a large diameter. J. Aust. Math. Soc. Ser. A 58, 298–311 (1995)zbMATHCrossRefGoogle Scholar
  39. 39.
    Łuczak T.: Random trees and random graphs. Random Struct. Algorithms 13, 485–500 (1998)zbMATHCrossRefGoogle Scholar
  40. 40.
    Łuczak T., Pittel B., Wierman J.C.: The structure of random graphs at the point of transition. Trans. Am. Math. Soc. 341, 721–748 (1994)zbMATHCrossRefGoogle Scholar
  41. 41.
    Marckert J.-F., Mokkadem A.: The depth first processes of Galton–Watson trees converge to the same Brownian excursion. Ann. Probab. 31, 1655–1678 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Nachmias A., Peres Y.: Critical random graphs: diameter and mixing time. Ann. Probab. 36, 1267–1286 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Nachmias A., Peres Y.: The critical random graph, with martingales. Isr. J. Math. 176(1), 29–41 (2010a)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Nachmias A., Peres Y.: Critical percolation on random regular graphs. Random Struct. Algorithms 36(2), 111–148 (2010b)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Pittel B.: On the largest component of the random graph at a nearcritical stage. J. Combin. Theory Ser. B 82, 237–269 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Rényi A., Szekeres G.: On the height of trees. J. Aust. Math. Soc. 7, 497–507 (1967)zbMATHCrossRefGoogle Scholar
  47. 47.
    Revuz D., Yor M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin (2004)Google Scholar
  48. 48.
    Riordan, O., Wormald, N.C.: The diameter of sparse random graphs. arXiv:0808.4067 [math.PR] (2008)Google Scholar
  49. 49.
    Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes and Martingales: Itô Calculus, vol. 2, 2nd edn. Cambridge University Press, Cambridge (2000)Google Scholar
  50. 50.
    Scott A.D., Sorkin G.B.: Solving sparse random instances of Max Cut and Max 2-CSP in linear expected time. Combin. Probab. Comput. 15, 281–315 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Spencer J.: Enumerating graphs and Brownian motion. Commun. Pure Appl. Math. 50, 291–294 (1997)zbMATHCrossRefGoogle Scholar
  52. 52.
    Takács L.: A combinatorial theorem for stochastic processes. Bull. Am. Math. Soc. 71, 649–650 (1965)zbMATHCrossRefGoogle Scholar
  53. 53.
    Tarjan R.: Depth first search and linear graph algorithms. SIAM J. Comput. 1, 146–160 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Wright E.M.: The number of connected sparsely edged graphs. J. Graph Theory 1(4), 317–330 (1977)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsMcGill UniversityMontrealCanada
  2. 2.Projet algorithms, INRIA RocquencourtLe ChesnayFrance
  3. 3.Department of StatisticsUniversity of WarwickCoventryUK

Personalised recommendations