Probability Theory and Related Fields

, Volume 151, Issue 3–4, pp 559–590 | Cite as

A concrete estimate for the weak Poincaré inequality on loop space

Article

Abstract

The aim of the paper is to study the pinned Wiener measure on the loop space over a simply connected compact Riemannian manifold together with a Hilbert space structure and the Ornstein–Uhlenbeck operator d*d. We give a concrete estimate for the weak Poincaré inequality, assuming positivity of the Ricci curvature of the underlying manifold. The order of the rate function is sα for any α > 0.

Keywords

Brownian bridge measure Loop space Orstein–Uhlenbeck operator Weak Poincaré inequality 

Mathematics Subject Classification (2000)

60Hxx 58J65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aida S.: Logarithmic Sobolev inequalities on loop spaces over compact Riemannian manifolds. In: Davies, I.M., Truman, A., Elworthy, K.D. (eds) Proceedings of the Fifth Gregynog Symposium, Stochastic Analysis and Applications, pp. 1–19. World Scientific, Singapore (1996)Google Scholar
  2. 2.
    Aida S.: Uniform positivity improving property, Sobolev inequalities, and spectral gaps. J. Funct. Anal. 158, 152–185 (1998)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Aida S.: Differential calculus on path and loop spaces. II. Irreducibility of Dirichlet forms on loop spaces. Bull. Sci. Math. 122, 635–666 (1998)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Aida S.: Logarithmic derivatives of heat kernels and logarithmic Sobolev inequalities with unbounded diffusion coefficients on loop spaces. J. Funct. Anal. 174, 430–477 (2000)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Aida S.: An estimate of the gap of spectrum of Schrödinger operators which generate hyperbounded semigroups. J. Funct. Anal. 185, 474–526 (2001)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Aida S., Elworthy K.D.: Differential calculus on path and loop spaces. I. Logarithmic Sobolev inequalities on path spaces. C. R. Acad. Sci. Paris Sér. I Math. 321(1), 97–102 (1995)MathSciNetMATHGoogle Scholar
  7. 7.
    Capitaine M., Hsu E.P., Ledoux M.: Martingale representation and a simple proof of logarithmic Sobolev inequalities on path spaces. Electron. Commun. Probab. 2, 71–81 (1997)MathSciNetMATHGoogle Scholar
  8. 8.
    Chen, X., Li, X.-M., Wu, B.: A Poincaré inequality on loop spaces. J. Funct. Anal. (to appear)Google Scholar
  9. 9.
    Driver B.: A Cameron-Martin type quasi-invariance theorem for pinned Brownian motion on a compact Riemannian manifold. Trans. Am. Math. Soc. 342, 375–395 (1994)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Eberle A.: Absence of spectral gaps on a class of loop spaces. J. Math. Pures Appl. 81, 915–955 (2002)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Eberle A.: Local spectral gaps on loop spaces. J. Math. Pures Appl. 82, 313–365 (2002)MathSciNetGoogle Scholar
  12. 12.
    Eberle A.: Spectral gaps on discretized loop spaces. Infinite Dimensional Anal. Quantum Probab. Relat. Top. 6, 265–300 (2003)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Elworthy, K.D., LeJan, Y., Li, X.-M.: On the geometry of diffusion operators and stochastic flows. Lecture Notes in Mathematics, vol. 1720. Springer, Berlin (1999)Google Scholar
  14. 14.
    Elworthy, K.D., Li, X.-M.: A class of Integration by parts formulae in stochastic analysis I. In: Itô’s Stochastic Calculus and Probability Theory (dedicated to Itô on the occasion of his eightieth birthday), pp 15–30. Springer, Tokyo (1996)Google Scholar
  15. 15.
    Fang S.-Z.: Inégalité du type de Poincaré sur l’espace des chemins riemanniens. C. R. Acad. Sci. Paris Sér. I Math. 318, 257–260 (1994)MATHGoogle Scholar
  16. 16.
    Gong F.-Z., Ma Z.-M.: The log-Sobolev inequality on loop space over a compact Riemannian manifold. J. Funct. Anal. 157, 599–623 (1998)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Gross L.: Logarithmic Sobolev inequalities on loop groups. J. Funct. Anal. 102, 268–313 (1991)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Holley A.R., Kusuoka S., Stroock D.W.: Asymptotics of the spectral gap with applications to the theory of simulated annealing. J. Funct. Anal. 83, 333–347 (1989)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Hsu E.P.: Logarithmic Sobolev inequalities on path spaces over Riemannian manifolds. Commun. Math. Phys. 189, 9–16 (1997)MATHCrossRefGoogle Scholar
  20. 20.
    Kusuoka S.: Analysis on Wiener spaces. II. Differential forms. J. Funct. Anal. 103, 229–274 (1992)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Malliavin P., Stroock D.: Short time behaviour of the heat kernel and its logarithmic derivatives. J. Differ. Geom. 44, 550–570 (1996)MathSciNetMATHGoogle Scholar
  22. 22.
    Rockner M., Wang F.-Y.: Weak Poincaré inequalities and convergence rates of Markov semigroups. J. Funct. Anal. 185, 564–603 (2001)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Varadhan S.R.S.: On the behavior of the fundamental solution of the heat equation with variable coefficients. Commun. Pure Appl. Math. 20, 431–455 (1967)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Wang F.-Y.: Functional Inequalities, Markov Semigroups and Spectral Theory. Science Press, Beijing (2004)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Mathematics InstituteUniversity of WarwickCoventryUK
  2. 2.Department of MathematicsUniversity of WarwickCoventryUK

Personalised recommendations