Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Probability Theory and Related Fields
  3. Article
Exact inequalities for sums of asymmetric random variables, with applications
Download PDF
Download PDF
  • Published: 07 February 2007

Exact inequalities for sums of asymmetric random variables, with applications

  • Iosif Pinelis1 

Probability Theory and Related Fields volume 139, pages 605–635 (2007)Cite this article

  • 221 Accesses

  • 24 Citations

  • Metrics details

Abstract

Let \({{\rm BS}_{1},\dots,{\rm BS}_{n}}\) be independent identically distributed random variables each having the standardized Bernoulli distribution with parameter \({p \in (0, 1)}\) . Let \({m_*(p):=(1 + p + 2 p^{2})/(2\sqrt{p - p^{2}} + 4 p^{2})}\) if \({0 < p \le \frac12}\) and \({m_{*}(p) := 1 if \frac12 \le p < 1}\) . Let \({m \ge m_{*}(p)}\) . Let f be such a function that f and f′′ are nondecreasing and convex. Then it is proved that for all nonnegative numbers \({c_{1},\dots,c_{n}}\) one has the inequality \({{\mathsf{E}} f(c_1{\mathrm{B\!S}}_1+\dots+c_n{\mathrm{B\!S}}_n)\le{\mathsf{E}} f\big(s^{(m)}({\mathrm{B\!S}}_1+\dots+{\mathrm{BS}}_{n})\big),}\) where \({s^{(m)}:=\big(\frac1n\,\sum_{i=1}^n c_i^{2m}\big)^\frac1{2m}}\) . The lower bound \({m_{*}(p)}\) on m is exact for each \({p \in (0,1)}\) . Moreover, \({{\operatorname{\mathsf{E}}} f(c_1{\mathrm{B\!S}}_1+\dots+c_n{\mathrm{B\!S}}_n)}\) is Schur-concave in \({(c_{1}^{2m},\ldots,c_{n}^{2m})}\) .

A number of corollaries are obtained, including upper bounds on generalized moments and tail probabilities of (super)martingales with differences of bounded asymmetry, and also upper bounds on the maximal function of such (super)martingales. Applications to generalized self-normalized sums and t-statistics are given.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Bentkus V. (2002). A remark on the inequalities of Bernstein, Prokhorov, Bennett, Hoeffding, Talagrand. Lithuanian Math. J. 42: 262–269

    Article  MATH  MathSciNet  Google Scholar 

  2. Bentkus V. (2003). An inequality for tail probabilities of martingales with differences bounded from one side. J. Theoret. Probab. 16: 161–173

    Article  MATH  MathSciNet  Google Scholar 

  3. Bentkus V. (2004). On Hoeffding’s inequalities. Ann. Probab. 32: 1650–1673

    Article  MATH  MathSciNet  Google Scholar 

  4. Bentkus V., Kalosha N., Zuijlen M. van (2006). On domination of tail probabilities of (super)martingales: explicit bounds. Liet. Mat. Rink. 46(1): 3–54

    MathSciNet  Google Scholar 

  5. Bobkov S.G., Götze F., Houdré C. (2001). On Gaussian and Bernoulli covariance representations. Bernoulli 7: 439–451

    Article  MATH  MathSciNet  Google Scholar 

  6. Peña V.H. de la, Ibragimov R., Sharakhmetov S. (2003). On extremal distributions and sharp L p -bounds for sums of multilinear forms. Ann. Probab. 31: 630–675

    Article  MATH  MathSciNet  Google Scholar 

  7. Peña V.H. de la, Klass M.J., Lai T.L., (2005). Self-normalized processes: exponential inequalities, moment bounds and iterated logarithm laws. Ann. Probab. 32: 1902–1933

    Google Scholar 

  8. Dufour J.-M., Hallin M. (1993). Improved Eaton bounds for linear combinations of bounded random variables, with statistical applications. J. Am. Stat. Assoc. 88: 1026–1033

    Article  MATH  MathSciNet  Google Scholar 

  9. Eaton and M.L. (1970). A note on symmetric Bernoulli random variables. Ann. Math. Stat. 41: 1223–1226

    MATH  Google Scholar 

  10. Eaton M.L. (1974). A probability inequality for linear combinations of bounded random variables. Ann. Stat. 2: 609–614

    MATH  MathSciNet  Google Scholar 

  11. Efron B. (1969). Student’s t test under symmetry conditions. J. Am. Stat. Assoc. 64: 1278–1302

    Article  MATH  MathSciNet  Google Scholar 

  12. Figiel T., Hitczenko P., Johnson W.B., Schechtman G., Zinn J. (1997). Extremal properties of Rademacher functions with applications to the Khintchine and Rosenthal inequalities. Trans. Am. Math. Soc. 349: 997–1027

    Article  MATH  MathSciNet  Google Scholar 

  13. Hoeffding W. (1963). Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58: 13–30

    Article  MATH  MathSciNet  Google Scholar 

  14. Jing B.-Y., Shao Q.-M., Zhou W. (2004). Saddlepoint approximation for Student’s t-statistic with no moment conditions. Ann. Stat. 32: 2679–2711

    Article  MATH  MathSciNet  Google Scholar 

  15. Hunt G.A. (1955). An inequality in probability theory. Proc. Am. Math. Soc. 6: 506–510

    Article  MATH  Google Scholar 

  16. Logan B.F., Mallows C.L., Rice S.O., Shepp L.A. (1973). Limit distributions of self-normalized sums. Ann. Probab. 1: 788–809

    MATH  MathSciNet  Google Scholar 

  17. Marshall, A.W., Olkin, I.: Inequalities: theory of majorization and its applications. Mathematics in Science and Engineering, Vol. 143. Academic-Harcourt Brace Jovanovich Publishers, New York-London (1979)

  18. Muirhead R.F. (1903). Some methods applicable to identities and inequalities of symmetric algebraic functions of n letters. Proc. Edinb. Math. Soc. 21: 144–157

    Article  Google Scholar 

  19. Pinelis I. (1994). Extremal probabilistic problems and Hotelling’s T 2 test under a symmetry condition. Ann. Stat. 22(1): 357–368

    MATH  MathSciNet  Google Scholar 

  20. Pinelis, I.: Optimal tail comparison based on comparison of moments. High dimensional probability (Oberwolfach, 1996), 297–314, Progr. Probab., 43, Birkhäuser, Basel (1998)

  21. Pinelis, I.: Fractional sums and integrals of r-concave tails and applications to comparison probability inequalities. Advances in stochastic inequalities (Atlanta, GA, 1997), 149–168, Contemp. Math., 234, Am. Math. Soc., Providence, RI (1999)

  22. Pinelis, I.: Dimensionality reduction in extremal problems for moments of linear combinations of vectors with random coefficients. Stochastic inequalities, applications, 169–185, Progr. Probab., 56, Birkhäuser, Basel (2003)

  23. Pinelis, I.: Binomial upper bounds on generalized moments and tail probabilities of (super)martingales with differences bounded from above. In: IMS Lecture Notes–Monograph Series, High Dimensional Probability Vol. 51 (2006) 33–52. Institute of Mathematical Statistics (2006). doi: 10.1214/074921706000000743. http://www.arxiv.org/abs/math.PR/0512301

  24. Pinelis, I.: On normal domination of (super)martingales. Electr. J. Probab. 11 Paper 40, 1049-1070 (2006). http://www.math.washington.edu/∼ejpecp/include/getdoc.php?id=3724&+ article=1648&mode=pdf

  25. Pinelis, I.: On inequalities for sums of bounded random variables. Preprint (2006), http://www.arxiv.org/abs/math.PR/0603030

  26. Pinelis, I.: Toward the best constant factor for the Rademacher–Gaussian tail comparison. Preprint (2006), http://www.arxiv.org/abs/math.PR/0605340

  27. Pinelis, I.: Student’s t-test without symmetry conditions. Preprint (2006), http://www.arxiv.org/abs/math.ST/0606160

  28. Shao Q.-M. (1997). Self-normalized large deviations. Ann. Probab. 25: 285–328

    Article  MATH  MathSciNet  Google Scholar 

  29. Shorack, G.R., Wellner, J.A.: Empirical Processes with Applications to Statistics. Wiley, New York (1986)

  30. Utev, S.A.: Extremal problems in moment inequalities. (Russian) Limit theorems of probability theory, Trudy Inst. Mat. 5, 56–75, 175. “Nauka” Sibirsk. Otdel., Novosibirsk (1985)

  31. Whittle P. (1960). Bounds for the moments of linear and quadratic forms in independent variables. Teor. Verojatnost. i Primenen. 5: 331–335

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, 49931, USA

    Iosif Pinelis

Authors
  1. Iosif Pinelis
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Iosif Pinelis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pinelis, I. Exact inequalities for sums of asymmetric random variables, with applications. Probab. Theory Relat. Fields 139, 605–635 (2007). https://doi.org/10.1007/s00440-007-0055-4

Download citation

  • Received: 25 May 2006

  • Revised: 26 December 2006

  • Published: 07 February 2007

  • Issue Date: November 2007

  • DOI: https://doi.org/10.1007/s00440-007-0055-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • (super)martingales
  • Probability inequalities
  • Generalized moments
  • Self-normalized sums
  • t-statistic

Mathematics Subject Classification (2000)

  • Primary: 60E15
  • Primary: 60G50
  • Primary: 60G42
  • Primary: 60G48
  • Primary: 62F03
  • Primary: 62F25
  • Primary: 62G10
  • Primary: 60G15
  • Secondary: 60E05
  • Secondary: 62E10
  • Secondary: 62E10
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

65.108.231.39

Not affiliated

Springer Nature

© 2023 Springer Nature