Probability Theory and Related Fields

, Volume 131, Issue 3, pp 311–340 | Cite as

Glauber dynamics on trees and hyperbolic graphs

  • Noam Berger
  • Claire Kenyon
  • Elchanan Mossel
  • Yuval Peres
Article

Abstract.

We study continuous time Glauber dynamics for random configurations with local constraints (e.g. proper coloring, Ising and Potts models) on finite graphs with n vertices and of bounded degree. We show that the relaxation time (defined as the reciprocal of the spectral gap |λ1λ2|) for the dynamics on trees and on planar hyperbolic graphs, is polynomial in n. For these hyperbolic graphs, this yields a general polynomial sampling algorithm for random configurations. We then show that for general graphs, if the relaxation time τ2 satisfies τ2=O(1), then the correlation coefficient, and the mutual information, between any local function (which depends only on the configuration in a fixed window) and the boundary conditions, decays exponentially in the distance between the window and the boundary. For the Ising model on a regular tree, this condition is sharp.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aldous, D., Fill, J.A.: Reversible Markov chains and random walks on graphs. Book in preparation 2000, Current version available at http://www.stat.berkeley.edu/users/aldous/book.html
  2. 2.
    van den Berg, J.: A uniqueness condition for Gibbs measures, with application to the 2-dimensional Ising antiferromagnet. Comm. Math. Phys. 152 (1), 161–166 (1993)Google Scholar
  3. 3.
    Bleher, P.M., Ruiz, J., Zagrebnov, V.A.: On the purity of limiting Gibbs state for the Ising model on the Bethe lattice. J. Stat. Phys 79, 473–482 (1995)Google Scholar
  4. 4.
    Bubley, R., Dyer, M.: Path coupling: a technique for proving rapid mixing in Markov chains. In: Proceedings of the 38th Annual Symposium on Foundations of Computer Science (FOCS), 1997, pp. 223–231Google Scholar
  5. 5.
    Chen, M.F.: Trilogy of couplings and general formulas for lower bound of spectral gap. Probability towards 2000, Lecture Notes in Statist., 128, Springer, New York, 1998, pp. 123–136Google Scholar
  6. 6.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York, 1991Google Scholar
  7. 7.
    Dyer, M., Greenhill, C.: On Markov chains for independent sets. J. Algor. 35, 17–49 (2000)Google Scholar
  8. 8.
    Evans, W., Kenyon, C., Peres, Y., Schulman, L.J.: Broadcasting on trees and the Ising Model. Ann. Appl. Prob. 10, 410–433 (2000)Google Scholar
  9. 9.
    Fortuin, C.M., Kasteleyn, P.W.: On the random-cluster model. I. Introduction and relation to other models. Physica 57, 536–564 (1972)Google Scholar
  10. 10.
    Fortuin, C.M., Kasteleyn, P.W., Ginibre, J.: Correlation inequalities on some partially ordered sets. Comm. Math. Phys. 22, 89–103 (1971)Google Scholar
  11. 11.
    Haggstrom, O., Jonasson, J., Lyons, R.: Explicit isoperimetric constants and phase transitions in the random-cluster model. Ann. Probab. 30, 443–473 (2002)Google Scholar
  12. 12.
    Ioffe, D.: A note on the extremality of the disordered state for the Ising model on the Bethe lattice. Lett. Math. Phys. 37, 137–143 (1996)Google Scholar
  13. 13.
    Janson, S., Luczak, T., Ruciński, A.: Random Graphs. Wiley, New York, 2000Google Scholar
  14. 14.
    Jerrum, M.: A very simple algorithm for estimating the number of k-colorings of a low-degree graph. Rand. Struc. Alg. 7, 157–165 (1995)Google Scholar
  15. 15.
    Jerrum, M., Sinclair, A.: Approximating the permanent. Siam J. Comput. 18, 1149–1178 (1989)Google Scholar
  16. 16.
    Jerrum, M., Sinclair, A.: Polynomial time approximation algorithms for the Ising model. Siam J. Comput. 22, 1087–1116 (1993)Google Scholar
  17. 17.
    Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries. Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, Crete, Greece, 2001Google Scholar
  18. 18.
    Katok, S.: Fuchsian Groups. University of Chicago Press, 1992Google Scholar
  19. 19.
    Kenyon, C., Mossel, E., Peres, Y.: Glauber dynamics on trees and hyperbolic graphs. 42nd IEEE Symposium on Foundations of Computer Science (Las Vegas, NV, 2001), IEEE Computer Soc., Los Alamitos, CA, 2001, pp. 568–578Google Scholar
  20. 20.
    Kinnersley, N.G.: The vertex seperation number of a graph equals its path-width. Infor. Proc. Lett. 42, 345–350 (1992)Google Scholar
  21. 21.
    Liggett, T.: Interacting particle systems. Springer, New York, 1985Google Scholar
  22. 22.
    Luby, M., Vigoda, E.: Approximately Counting Up To Four. In: proceedings of the 29th Annual Symposium on Theory of Computing (STOC), 1997, pp. 682–687Google Scholar
  23. 23.
    Luby, M., Vigoda, E.: Fast Convergence of the Glauber Dynamics for Sampling Independent Sets, Statistical physics methods in discrete probability, combinatorics and theoretical computer science. Rand. Struc. Alg. 15, 229–241 (1999)Google Scholar
  24. 24.
    Magnus, W.: Noneuclidean tessellations and their groups. Academic Press, New York and London, 1974Google Scholar
  25. 25.
    Martinelli, F.: Lectures on Glauber dynamics for discrete spin models. Lectures on probability theory and statistics (Saint-Flour, 1997) Lecture Notes in Math. 1717, Springer, Berlin, 1998, pp. 93–191Google Scholar
  26. 26.
    Martinelli, F., Sinclair, A., Weitz, D.: Glauber dynamics on trees: Boundary conditions and mixing time. Preprint 2003, available at http://front.math.ucdavis.edu/math.PR/0307336
  27. 27.
    Mossel, E.: Reconstruction on trees: Beating the second eigenvalue. Ann. Appl. Probab. 11 (1), 285–300 (2001)Google Scholar
  28. 28.
    Mossel, E.: Recursive reconstruction on periodic trees. Rand. Struc. Alg. 13, 81–97 (1998)Google Scholar
  29. 29.
    Mossel, E., Peres Y.: Information flow on trees. To appear in Ann. Appl. Probab., 2003Google Scholar
  30. 30.
    Nacu, S.: Glauber dynamics on the cycle is monotone. To appear, Probab. Theory Related Fields, 2003Google Scholar
  31. 31.
    Paterson, A.L.T.: Amenability. American Mathematical Soc., Providence, 1988Google Scholar
  32. 32.
    Propp, J., Wilson, D.: Exact Sampling with Coupled Markov Chains and Applications to Statistical Mechanics. Rand. Struc. Alg. 9, 223–252 (1996)Google Scholar
  33. 33.
    Peres, Y., Winkler, P.: In preparation, 2003Google Scholar
  34. 34.
    Randall, D., Tetali, P.: Analyzing Glauber dynamics by comparison of Markov chains. J. Math. Phys. 41, 1598–1615 (2000)MathSciNetGoogle Scholar
  35. 35.
    Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb. Theory Series B 35, 39–61 (1983)Google Scholar
  36. 36.
    Saloff-Coste, L.: Lectures on finite Markov chains. Lectures on probability theory and statistics (Saint-Flour, 1996) Lecture Notes in Math. 1665, Springer, Berlin, 1997, pp. 301–413Google Scholar
  37. 37.
    Vigoda, E.: Improved bounds for sampling colorings. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. J. Math. Phys. 41 (3), 1555–1569 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Noam Berger
    • 1
  • Claire Kenyon
    • 2
  • Elchanan Mossel
    • 3
  • Yuval Peres
    • 4
  1. 1.University of CaliforniaBerkeleyUSA
  2. 2.LRI, UMR CNRSUniversité Paris-SudFrance
  3. 3.University of CaliforniaBerkeleyUSA
  4. 4.University of CaliforniaBerkeleyUSA

Personalised recommendations