Abstract.
In this paper, a surprising connection is described between a specific brand of random lattices, namely planar quadrangulations, and Aldous’ Integrated SuperBrownian Excursion (ISE). As a consequence, the radius r n of a random quadrangulation with n faces is shown to converge, up to scaling, to the width r=R−L of the support of the one-dimensional ISE, or precisely: More generally the distribution of distances to a random vertex in a random quadrangulation is described in its scaled limit by the random measure ISE shifted to set the minimum of its support in zero. The first combinatorial ingredient is an encoding of quadrangulations by trees embedded in the positive half-line, reminiscent of Cori and Vauquelin’s well labelled trees. The second step relates these trees to embedded (discrete) trees in the sense of Aldous, via the conjugation of tree principle, an analogue for trees of Vervaat’s construction of the Brownian excursion from the bridge. From probability theory, we need a new result of independent interest: the weak convergence of the encoding of a random embedded plane tree by two contour walks to the Brownian snake description of ISE. Our results suggest the existence of a Continuum Random Map describing in term of ISE the scaled limit of the dynamical triangulations considered in two-dimensional pure quantum gravity.
Article PDF
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Avoid common mistakes on your manuscript.
References
Aldous, D.J.: Tree-based models for random distribution of mass. J. Statist. Phys. 73(3-4), 625–641 (1993)
Alon, N., Spencer, J.H.: The probabilistic method. With an appendix by Paul Erdös. John Wiley & Sons, Inc., New York, 1992
Ambjørn, J., Durhuus, B., Jónsson, T.: Quantum gravity, a statistical field theory approach. Cambridge Monographs on Mathematical Physics, 1997
Ambjørn, J., Watabiki, Y.: Scaling in quantum gravity. Nucl. Phys. B. 445, 129–144 (1995)
Arquès, D.: Les hypercartes planaires sont des arbres très bien étiquetés. Discrete Math. 58, 11–24 (1986)
Banderier, C., Flajolet, P., Schaeffer, G., Soria M.: Random maps, coalescing saddles, singularity analysis, and Airy phenomena. Random Struct. & Algorithms. 19, 194–246 (2001)
Bender, E.A., Canfield, E.R.: Face sizes of 3-polytopes. J. Combinat. Theory, Ser. B. 46, 58–65 (1989)
Bender, E.A., Compton, K.J., Richmond, L.B.: 0–1 laws for maps. Random Struct. & Algorithms 14, 215–237 (1999)
Billingsley, P.: Convergence of probability measures. John Wiley & Sons, 1968
Brezin, E., Itzykson, C., Parisi, G., Zuber, J.-B.: Planar diagrams. Comm. Math. Phys. 59, 35–47 (1978)
Bollobás, B.: Random graphs. Academic Press, 1985
Borgs, C., Chayes, J., van der Hofstad, R., Slade, G.: Mean-field lattice trees. On combinatorics and statistical mechanics. Ann. Comb. 3(2-4), 205–221 (1999)
Cori, R., Vauquelin, B.: Planar maps are well labeled trees. Canad. J. Math. 33(5), 1023–1042 (1981)
Delmas, J.F.: Computation of moments for the length of the one dimensional ISE support. Electron. J. Probab. 8 (2003), 15 pp. (electronic)
Dembo, A., Zeitouni, O.: Large deviations for random distribution of mass. Random discrete structures. (Minneapolis, MN, 1993), IMA Math. Appl., vol. 76, Springer, New York, 1996, pp. 45–53
Derbez, E., Slade, G.: The scaling limit of lattice trees in high dimensions. Comm. Math. Phys. 193(1), 69–104 (1998)
Gao, Z., Wormald, N.C.: The distribution of the maximum vertex degree in random planar maps. J. Combinat. Theory, Ser. A 89, 201–230 (2000)
Gross, D., Piran, T., Weinberg, S.: Two dimensional quantum gravity and random surfaces. World Scientific, 1992
Hara, T., Slade, G.: The incipient infinite cluster in high-dimensional percolations. Electron. Res. Announc. Am. Math. Soc. 4, 48–55 (1998)
Jacquard, B.: Cartes et arbres : énumération, génération et dessins. PhD thesis, École Polytechnique, Palaiseau, 1997
Jain, S., Mathur, S.D.: World sheet geometry and baby universes in 2-d quantum gravity. Phys. Lett. B. 305, 208–213 (1993)
Kaigh, W.D.: An invariance principle for random walk conditioned by a late return to zero. Ann. Prob., 4(1), 115–121 (1976)
Le Gall, J.-F.: Spatial branching processes, random snakes and partial differential equations. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1999
Marcus, M., Schaeffer, G.: Une bijection simple pour les cartes orientables. Manuscript, 10pp, july 2001
Marcus, M., Vauquelin, B.: Un codage des cartes de genre quelconque. In: Séries formelles et combinatoire algébrique, 7ème colloque, Leclerc, B., Thibon, J.Y. (eds.), Université de Marne-la-Vallée, 1995, pp. 399–416
Marckert, J.-F., Mokkadem, A.: States spaces of the snake and of its tour – Convergence of the discrete snake. To appear in J. Theo. Prob., 2002
Petrov, V.V.: Sums of Independent Random Variables. Springer, 1975
Pitman, J.: Enumerations of Trees and Forests related to Branching Processes and Random Walks. Microsurveys in discrete probability (Princeton, NJ, 1997), 163–180, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 41, Amer. Math. Soc., Providence, 1998
Richmond, L.B.,Wormald, N.C.: Almost all maps are asymmetric. J. Combinat. Theory, Ser. B. 63(1), 1–7 (1995)
Rogers, L.C.G., Williams, D.: Diffusions, Markov processes, and martingales. Vol. 1. Foundations. Second edition. Wiley Series in Probability and Mathematical Statistics, 1994
Schaeffer, G.: Conjugaison d’arbres et cartes combinatoires aléatoires. PhD. thesis, Université Bordeaux I, Bordeaux, 1998
Serlet, L.: A large deviation principle for the Brownian snake, Stochastic Process. Appl. 67(1), 101–115 (1997)
Stanley, R.: Enumerative Combinatorics, volume II. Cambridge Series in Advanced Mathematics, 1999
Sugitani, S.: Some properties for the measure-valued branching diffusion processes. J. Math. Soc. Japan. 41(3), 437–462 (1989)
Tutte, W.T.: A census of planar maps. Canad. J. Math. 15, 249–271 (1963)
Watabiki, Y.: Construction of noncritical string field theory by transfert matrix formalism in dynamical triangulations. Nucl. Phys. B. 441, 119–166 (1995)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chassaing, P., Schaeffer, G. Random planar lattices and integrated superBrownian excursion. Probab. Theory Relat. Fields 128, 161–212 (2004). https://doi.org/10.1007/s00440-003-0297-8
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00440-003-0297-8