Skip to main content
Log in

Human ABL1 deficiency syndrome (HADS) is a recognizable syndrome distinct from ABL1-related congenital heart defects and skeletal malformations syndrome

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Germline gain of function variants in the oncogene ABL1 cause congenital heart defects and skeletal malformations (CHDSKM) syndrome. Whether a corresponding ABL1 deficiency disorder exists in humans remains unknown although developmental defects in mice deficient for Abl1 support this notion. Here, we describe two multiplex consanguineous families, each segregating a different homozygous likely loss of function variant in ABL1. The associated phenotype is multiple congenital malformations and distinctive facial dysmorphism that are opposite in many ways to CHDSKM. We suggest that a tight balance of ABL1 activity is required during embryonic development and that both germline gain of function and loss of function variants result in distinctively different allelic congenital malformation disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data supporting the findings described in this manuscript are available in the article and from the corresponding author upon request.

References

  • AlAbdi L, Maddirevula S, Shamseldin HE, Khouj E, Helaby R, Hamid H, Almulhim A, Hashem MO, Abdulwahab F, Abouyousef O (2023) Diagnostic implications of pitfalls in causal variant identification based on 4577 molecularly characterized families. Nat Commun 14:5269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apperley J (2009) Issues of imatinib and pregnancy outcome. J Natl Compr Canc Netw 7:1050–1058

    Article  CAS  PubMed  Google Scholar 

  • Brasher BB, Van Etten RA (2000) c-Abl has high intrinsic tyrosine kinase activity that is stimulated by mutation of the Src homology 3 domain and by autophosphorylation at two distinct regulatory tyrosines. J Biol Chem 275:35631–35637

    Article  CAS  PubMed  Google Scholar 

  • Chen CA, Crutcher E, Gill H, Nelson TN, Robak LA, Jongmans MC, Pfundt R, Prasad C, Berard RA, Fannemel M (2020) The expanding clinical phenotype of germline ABL1-associated congenital heart defects and skeletal malformations syndrome. Hum Mutat 41:1738–1744

    Article  CAS  PubMed  Google Scholar 

  • Dingemans AJM, Hinne M, Truijen KMG, Goltstein L, van Reeuwijk J, de Leeuw N, Schuurs-Hoeijmakers J, Pfundt R, Diets IJ, den Hoed J, de Boer E, Coenen-van der Spek J, Jansen S, van Bon BW, Jonis N, Ockeloen CW, Vulto-van Silfhout AT, Kleefstra T, Koolen DA, Campeau PM, Palmer EE, Van Esch H, Lyon GJ, Alkuraya FS, Rauch A, Marom R, Baralle D, van der Sluijs PJ, Santen GWE, Kooy RF, van Gerven MAJ, Vissers L, de Vries BBA (2023) PhenoScore quantifies phenotypic variation for rare genetic diseases by combining facial analysis with other clinical features using a machine-learning framework. Nat Genet 55:1598–1607. https://doi.org/10.1038/s41588-023-01469-w

    Article  CAS  PubMed  Google Scholar 

  • El Gendy M, Kandil A, Helal M, Zahou F (2015) The teratogenic effects of imatinib mesylate on rat fetuses. Toxicol Rep 2:654–663

    Article  PubMed  PubMed Central  Google Scholar 

  • Greuber EK, Smith-Pearson P, Wang J, Pendergast AM (2013) Role of ABL family kinases in cancer: from leukaemia to solid tumours. Nat Rev Cancer 13:559–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hildebrandt CC, Patel N, Graham JM Jr, Bamshad M, Nickerson DA, White JJ, Marvin CT, Miller DE, UoWCfM G, Grand KL (2021) Further delineation of van den Ende-Gupta syndrome: Genetic heterogeneity and overlap with congenital heart defects and skeletal malformations syndrome. Am J Med Genet A 185:2136–2149

    Article  CAS  PubMed  Google Scholar 

  • Klein AD, Kessel AGV, Grosveld G, Bartram CR, Hagemeijer A, Bootsma D, Spurr NK, Heisterkamp N, Groffen J, Stephenson JR (1982) A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 300:765–767

    Article  PubMed  Google Scholar 

  • Li B, Boast S, De LosSantos K, Schieren I, Quiroz M, Teitelbaum SL, Tondravi MM, Goff SP (2000) Mice deficient in Abl are osteoporotic and have defects in osteoblast maturation. Nat Gene 24:304–308

    Article  CAS  Google Scholar 

  • Melo Rito MT, Freitas I, Pinto-Basto J, Kay T, Antunes D (2019) Germline ABL1variant identified in a Nepalese girl with congenital heart defects and skeletal malformations syndrome: a case report 23rd Annual Meeting of the Portuguese Society of Human Genetics, Coimbra, Portugal. Wolters Kluwer Health, Inc., pp p e19291

  • Nussinov R, Tsai C-J, Jang H (2022) How can same-gene mutations promote both cancer and developmental disorders? Sci Adv. https://doi.org/10.1126/sciadv.abm2059

    Article  PubMed  PubMed Central  Google Scholar 

  • Pye SM, Cortes J, Ault P, Hatfield A, Kantarjian H, Pilot R, Rosti G, Apperley JF (2008) The effects of imatinib on pregnancy outcome. Blood J Am Soc Hematol 111:5505–5508

    CAS  Google Scholar 

  • Qi H, Dong C, Chung WK, Wang K, Shen Y (2016) Deep genetic connection between cancer and developmental disorders. Hum Mutat 37:1042–1050

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu Z, Cang Y, Goff SP (2010) c-Abl tyrosine kinase regulates cardiac growth and development. Proc Natl Acad Sci 107:1136–1141

    Article  CAS  PubMed  Google Scholar 

  • Schwartzberg PL, Goff SP, Robertson EJ (1989) Germ-line transmission of a c-abl mutation produced by targeted gene disruption in ES cells. Science 246:799–803

    Article  CAS  PubMed  Google Scholar 

  • Schwartzberg PL, Stall AM, Hardin JD, Bowdish KS, Humaran T, Boast S, Harbison ML, Robertson EJ, Goff SP (1991) Mice homozygous for the ablm1 mutation show poor viability and depletion of selected B and T cell populations. Cell 65:1165–1175

    Article  CAS  PubMed  Google Scholar 

  • Spencer C, Comitis G, Lawrenson J, Fieggen K (2023) ABL1-related congenital heart defects and skeletal malformations syndrome in a patient from Sub-Saharan Africa: a case report highlighting novel cardiac features. Am J Med Genet A 191:1652–1655

    Article  PubMed  Google Scholar 

  • Strande NT, Riggs ER, Buchanan AH, Ceyhan-Birsoy O, DiStefano M, Dwight SS, Goldstein J, Ghosh R, Seifert BA, Sneddon TP (2017) Evaluating the clinical validity of gene-disease associations: an evidence-based framework developed by the clinical genome resource. Am J Hum Genet 100:895–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Testoni E, Stephenson NL, Torres-Ayuso P, Marusiak AA, Trotter EW, Hudson A, Hodgkinson CL, Morrow CJ, Dive C, Brognard J (2016) Somatically mutated ABL 1 is an actionable and essential NSCLC survival gene. EMBO Mol Med 8:105–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaxton C, Goldstein J, DiStefano M, Wallace K, Witmer PD, Haendel MA, Hamosh A, Rehm HL, Berg JS (2022) Lumping versus splitting: how to approach defining a disease to enable accurate genomic curation. Cell Genomics 2:100131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tybulewicz VL, Crawford CE, Jackson PK, Bronson RT, Mulligan RC (1991) Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65:1153–1163

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Charng W-L, Chen C-A, Rosenfeld JA, Al Shamsi A, Al-Gazali L, McGuire M, Mew NA, Arnold GL, Qu C (2017) Germline mutations in ABL1 cause an autosomal dominant syndrome characterized by congenital heart defects and skeletal malformations. Nat Genet 49:613–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb MJ, Jafta D (2012) Imatinib use in pregnancy. Turk J Haematol 29:405

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the families included in this study for their enthusatic assistance. The authors also thank KFMC Research Centre for partial support (IRF 019-052) and Alexander J. M. Dingemans for his help with the analysis performed using PhenoScore.

Funding

This work was funded by King Fahad Medical City, Under grant No. IRF 019-052.

Author information

Authors and Affiliations

Authors

Contributions

LA, TN, EF, and FSA wrote the main manuscript text and FA, ECP, and US prepared figures 1-3. All authors reviewed the manuscript.

Corresponding author

Correspondence to Fowzan S. Alkuraya.

Ethics declarations

Conflict of interest

Authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 11 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlAbdi, L., Neuhann, T., Prott, EC. et al. Human ABL1 deficiency syndrome (HADS) is a recognizable syndrome distinct from ABL1-related congenital heart defects and skeletal malformations syndrome. Hum. Genet. (2024). https://doi.org/10.1007/s00439-024-02677-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00439-024-02677-y

Navigation