Skip to main content
Log in

Cross-ancestry genetic architecture and prediction for cholesterol traits

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

While cholesterol is essential, a high level of cholesterol is associated with the risk of cardiovascular diseases. Genome-wide association studies (GWASs) have proven successful in identifying genetic variants that are linked to cholesterol levels, predominantly in white European populations. However, the extent to which genetic effects on cholesterol vary across different ancestries remains largely unexplored. Here, we estimate cross-ancestry genetic correlation to address questions on how genetic effects are shared across ancestries. We find significant genetic heterogeneity between ancestries for cholesterol traits. Furthermore, we demonstrate that single nucleotide polymorphisms (SNPs) with concordant effects across ancestries for cholesterol are more frequently found in regulatory regions compared to other genomic regions. Indeed, the positive genetic covariance between ancestries is mostly driven by the effects of the concordant SNPs, whereas the genetic heterogeneity is attributed to the discordant SNPs. We also show that the predictive ability of the concordant SNPs is significantly higher than the discordant SNPs in the cross-ancestry polygenic prediction. The list of concordant SNPs for cholesterol is available in GWAS Catalog. These findings have relevance for the understanding of shared genetic architecture across ancestries, contributing to the development of clinical strategies for polygenic prediction of cholesterol in cross-ancestral settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The genotype and phenotype data of the UK Biobank can be accessed through procedures described on its webpage (https://www.ukbiobank.ac.uk/) and summary statistics of cholesterol traits can be obtained from Biobank Japan (BBJ) website (http://jenger.riken.jp/en/).

References

  • Amariuta T, Ishigaki K, Sugishita H, Ohta T, Koido M, Dey KK, Matsuda K, Murakami Y, Price AL, Kawakami E (2020) Improving the trans-ancestry portability of polygenic risk scores by prioritizing variants in predicted cell-type-specific regulatory elements. Nat Genet 52:1346–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amin N, Van Duijn CM, Aulchenko YS (2007) A genomic background based method for association analysis in related individuals. PLoS One 2:e1274

    Article  PubMed  PubMed Central  Google Scholar 

  • Andaleon A, Mogil LS, Wheeler HE (2018) Gene-based association study for lipid traits in diverse cohorts implicates BACE1 and SIDT2 regulation in triglyceride levels. PearJ 6:e4314

    Google Scholar 

  • Benyamin B, He J, Zhao Q, Gratten J, Garton F, Leo PJ, Liu Z, Mangelsdorf M, Al-Chalabi A, Anderson L (2017) Cross-ethnic meta-analysis identifies association of the GPX3-TNIP1 locus with amyotrophic lateral sclerosis. Nat Commun 8:611

    Article  PubMed  PubMed Central  Google Scholar 

  • Border R, Smolen A, Corley RP, Stallings MC, Brown SA, Conger RD, Derringer J, Donnellan MB, Haberstick BC, Hewitt JK (2019) Imputation of behavioral candidate gene repeat variants in 486,551 publicly-available UK Biobank individuals. Eur J Hum Genet 27:963–969

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown BC, Ye CJ, Price AL, Zaitlen N, Consortium AGENTD (2016) Transethnic genetic-correlation estimates from summary statistics. Am J Human Genetics 99:76–88

    Article  CAS  Google Scholar 

  • Bulik-Sullivan B, Finucane H, Anttila V, Gusev A, Day F, Loh P, Consortium SWGotPG (2015a) ReproGen consortium psychiatric genomics consortium genetic consortium for anorexia nervosa of the wellcome trust case control consortium 3 an atlas of genetic correlations across human diseases and traits. Nat Genet 47:1236–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, Patterson N, Daly MJ, Price AL, Neale BM, Consortium SWGotPG (2015b) LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 47:291–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bustamante CD, Burchard EG (2011) De la Vega FM. Genomics for the world. Nature 475:163–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao C (2020) Analysis of Concordance and Discordance in Genetic Association Studies via Forward-Backward Scoring Scheme, Masters Thesis, The Ohio State University

  • Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6:80–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craig M, Yarrarapu SNS, Dimri M (2018) In StatPearls; StatPearls Publishing: Treasure Island, FL, USA

  • Ding K, Kullo IJ (2009) Evolutionary genetics of coronary heart disease. Circulation 119:459–467

    Article  PubMed  Google Scholar 

  • Ding X, Zhang W, Li S, Yang H (2019) The role of cholesterol metabolism in cancer. Am J Cancer Res 9:219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan L, Shen H, Gelaye B, Meijsen J, Ressler K, Feldman M, Peterson R, Domingue B (2019) Analysis of polygenic risk score usage and performance in diverse human populations. Nat Commun 10:328. https://doi.org/10.1038/s41467-019-11112-0

    Article  CAS  Google Scholar 

  • Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, Sprosen T, Collins R, Allen NE (2017) Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am J Epidemiol 186:1026–1034

    Article  PubMed  PubMed Central  Google Scholar 

  • Galinsky KJ, Reshef YA, Finucane HK, Loh PR, Zaitlen N, Patterson NJ, Brown BC, Price AL (2019) Estimating cross-population genetic correlations of causal effect sizes. Genet Epidemiol 43:180–188

    Article  PubMed  Google Scholar 

  • Gilbert W (1985) Genes-in-pieces revisited. Science 228:823–825

    Article  CAS  PubMed  Google Scholar 

  • Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS (2013) Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 127:e6–e245

    PubMed  Google Scholar 

  • Graham SE, Clarke SL, Wu K-HH, Kanoni S, Zajac GJ, Ramdas S, Surakka I, Ntalla I, Vedantam S, Winkler TW (2021) The power of genetic diversity in genome-wide association studies of lipids. Nature 600:675–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo H, Li JJ, Lu Q, Hou L (2021) Detecting local genetic correlations with scan statistics. Nat Commun 12:2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gusev A, Lee SH, Trynka G, Finucane H, Vilhjálmsson BJ, Xu H, Zang C, Ripke S, Bulik-Sullivan B, Stahl E (2014) Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am J Hum Genet 95:535–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang QQ, Sallah N, Dunca D, Trivedi B, Hunt KA, Hodgson S, Lambert SA, Arciero E, Wright J, Griffiths C (2022) Transferability of genetic loci and polygenic scores for cardiometabolic traits in British Pakistani and Bangladeshi individuals. Nat Commun 13(1):4664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iliadou A, Snieder H, Wang X, Treiber FA, Davis CL (2005) Heritabilities of lipids in young European American and African American twins. Twin Res Hum Genet 8:492–498

    Article  PubMed  Google Scholar 

  • Jin J, Cerise JE, Kang SJ, Yoon EJ, Yoon S, Mendell NR, Finch SJ (2011) Principal components ancestry adjustment for Genetic Analysis Workshop 17 data BMC proceedings. Suppl 9(Suppl 9):S66. https://doi.org/10.1186/1753-6561-5-S9-S66

    Article  Google Scholar 

  • Klarin D, Damrauer SM, Cho K, Sun YV, Teslovich TM, Honerlaw J, Gagnon DR, DuVall SL, Li J, Peloso G (2018) Genetics of blood lipids among~ 300,000 multi-ethnic participants of the Million Veteran Program. Nat Genet 50:1514–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuchenbaecker K, Telkar N, Reiker T, Walters RG, Lin K, Eriksson A, Gurdasani D, Gilly A, Southam L, Tsafantakis E (2019) The transferability of lipid loci across African, Asian and European cohorts. Nat Commun 10(1):4330

    Article  PubMed  PubMed Central  Google Scholar 

  • Lam M, Chen C-Y, Li Z, Martin AR, Bryois J, Ma X, Gaspar H, Ikeda M, Benyamin B, Brown BC (2019) Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat Genet 51:1670–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Van der Werf JH (2016) MTG2: an efficient algorithm for multivariate linear mixed model analysis based on genomic information. Bioinformatics 32:1420–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Yang J, Goddard ME, Visscher PM, Wray NR (2012) Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. Bioinformatics 28:2540–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Weerasinghe WSP, Van Der Werf JH (2017) Genotype-environment interaction on human cognitive function conditioned on the status of breastfeeding and maternal smoking around birth. Sci Rep 7(1):6087

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis CM, Vassos E (2020) Polygenic risk scores: from research tools to clinical instruments. Genomic Medicine 12(1):44

    Google Scholar 

  • Liu X, White S, Peng B, Johnson AD, Brody JA, Li AH, Huang Z, Carroll A, Wei P, Gibbs R (2016) WGSA: an annotation pipeline for human genome sequencing studies. J Med Genet 53:111–112

    Article  CAS  PubMed  Google Scholar 

  • Liu DJ, Peloso GM, Yu H, Butterworth AS, Wang X, Mahajan A, Saleheen D, Emdin C, Alam D, Alves AC (2017) Exome-wide association study of plasma lipids in> 300,000 individuals. Nat Genet 49:1758–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loh P-R, Danecek P, Palamara PF, Fuchsberger C, Reshef YA, Finucane HK, Schoenherr S, Forer L, McCarthy S, Abecasis GR (2016) Reference-based phasing using the Haplotype Reference Consortium panel. Nat Genet 48:1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Yang J, Runesha HB, Tanaka T, Ferrucci L, Bandinelli S, Da Y (2010) Genome-wide association analysis of total cholesterol and high-density lipoprotein cholesterol levels using the Framingham heart study data. BMJ Med Genet 11:55

    Article  CAS  Google Scholar 

  • Marigorta UM, Navarro A (2013) High trans-ethnic replicability of GWAS results implies common causal variants. PLoS Genet 9:e1003566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Márquez-Luna C, Loh PR, Consortium SATD, Consortium STD, Price AL (2017) Multiethnic polygenic risk scores improve risk prediction in diverse populations. Genet Epidemiol 41:811–823

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin AR, Gignoux CR, Walters RK, Wojcik GL, Neale BM, Gravel S, Daly MJ, Bustamante CD, Kenny EE (2017) Human demographic history impacts genetic risk prediction across diverse populations. Am J Hum Genet 100:635–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ (2019) Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet 51:584–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClellan J, King M-C (2010) Genetic heterogeneity in human disease. Cell 141:210–217

    Article  CAS  PubMed  Google Scholar 

  • Meuleman W, Muratov A, Rynes E, Halow J, Lee K, Bates D, Diegel M, Dunn D, Neri F, Teodosiadis A (2020) Index and biological spectrum of human DNase I hypersensitive sites. Nature 584:244–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao J, Guo H, Song G, Zhao Z, Hou L, Lu Q (2023) Quantifying portable genetic effects and improving cross-ancestry genetic prediction with GWAS summary statistics. Nat Commun 14:832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Momin MM, Lee S, Wray NR, Lee SH (2023a) Significance tests for R2 of out-of-sample prediction using polygenic scores. Am J Hum Genet 110:349–358. https://doi.org/10.1016/j.ajhg.2023.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Momin MM, Shin J, Lee S, Truong B, Benyamin B, Lee SH (2023b) A method for an unbiased estimate of cross-ancestry genetic correlation using individual-level data. Nat Commun 14(1):732. https://doi.org/10.1038/s41467-023-36281-x

    Article  CAS  Google Scholar 

  • Morris AP (2011) Transethnic meta-analysis of genomewide association studies. Genet Epidemiol 35:809–822

    Article  PubMed  PubMed Central  Google Scholar 

  • Motazacker MM, Peter J, Treskes M, Shoulders CC, Kuivenhoven JA, Hovingh GK (2013) Evidence of a polygenic origin of extreme high-density lipoprotein cholesterol levels. Arterioscler Thromb Vasc Biol 33:1521–1528

    Article  CAS  PubMed  Google Scholar 

  • Musunuru K, Kathiresan S (2019) Genetics of common, complex coronary artery disease. Cell 177:132–145

    Article  CAS  PubMed  Google Scholar 

  • Nelson RH (2013) Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care 40:195–211

    Article  PubMed  Google Scholar 

  • Neshat M, Lee S, Momin MM, Truong B, van der Werf JHJ, Lee SH (2022) An effective hyper-parameter can increase the prediction accuracy in a single-step genetic evaluation. Front Genet 14:1104906. https://doi.org/10.3389/fgene.2023.1104906.

    Article  Google Scholar 

  • Ni G, Moser G, Ripke S, Neale BM, Corvin A, Walters JT, Farh K-H, Holmans PA, Lee P, Bulik-Sullivan B (2018) Estimation of genetic correlation via linkage disequilibrium score regression and genomic restricted maximum likelihood. Am J Hum Genet 102:1185–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novembre J, Stephens M (2008) Interpreting principal component analyses of spatial population genetic variation. Nat Genet 40:646–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SS, White MJ, Gignoux CR, Burchard EG (2016) Making precision medicine socially precise. Take a deep breath. Am J Respir Crit Care Med 193(4):348–350

    Article  PubMed  PubMed Central  Google Scholar 

  • Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, Kochi Y, Ohmura K, Suzuki A, Yoshida S (2014) Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506:376–381

    Article  CAS  PubMed  Google Scholar 

  • Okbay A, Beauchamp JP, Fontana MA, Lee JJ, Pers TH, Rietveld CA, Turley P, Chen G-B, Emilsson V, Meddens SFW (2016) Genome-wide association study identifies 74 loci associated with educational attainment. Nature 533:539–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ollier W, Sprosen T, Peakman T (2005) UK Biobank: from concept to reality. Future Med 6(6):639–646

    Google Scholar 

  • Peterson RE, Kuchenbaecker K, Walters RK, Chen C-Y, Popejoy AB, Periyasamy S, Lam M, Iyegbe C, Strawbridge RJ, Brick L (2019) Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell 179:589–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peyrot WJ, Van der Auwera S, Milaneschi Y, Dolan CV, Madden PA, Sullivan PF, Strohmaier J, Ripke S, Rietschel M, Nivard MG (2018) Does childhood trauma moderate polygenic risk for depression? A meta-analysis of 5765 subjects from the psychiatric genomics consortium. Biol Psychiat 84:138–147

    Article  PubMed  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, De Bakker PI, Daly MJ (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg NA, Huang L, Jewett EM, Szpiech ZA, Jankovic I, Boehnke M (2010) Genome-wide association studies in diverse populations. Nat Rev Genet 11:356–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Gazal S, Kanai M, Koch EM, Schoech AP, Siewert KM, Kim SS, Luo Y, Amariuta T, Huang H (2021) Population-specific causal disease effect sizes in functionally important regions impacted by selection. Nat Commun 12(1):1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speed D, Hemani G, Johnson MR, Balding DJ (2012) Improved heritability estimation from genome-wide SNPs. Am J Hum Genet 91:1011–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speed D, Cai N, Johnson MR, Nejentsev S, Balding DJ (2017) Reevaluation of SNP heritability in complex human traits. Nat Genet 49:986–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speed D, Holmes J, Balding DJ (2020) Evaluating and improving heritability models using summary statistics. Nat Genet 52:458–462

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi F, Akiyama M, Matoba N, Katsuya T, Nakatochi M, Tabara Y, Narita A, Saw W-Y, Moon S, Spracklen CN (2018) Interethnic analyses of blood pressure loci in populations of East Asian and European descent. Nat Commun 9:5052

    Article  PubMed  PubMed Central  Google Scholar 

  • Tall AR, Thomas DG, Gonzalez-Cabodevilla AG, Goldberg I (2022) Addressing dyslipidemic risk beyond LDL-cholesterol. J Clin Investig. https://doi.org/10.1172/JCI148559

    Article  PubMed  PubMed Central  Google Scholar 

  • Trinder M, Francis GA, Brunham LR (2020a) Association of monogenic vs polygenic hypercholesterolemia with risk of atherosclerotic cardiovascular disease. JAMA Cardiol 5:390–399

    Article  PubMed  PubMed Central  Google Scholar 

  • Trinder M, Paquette M, Cermakova L, Ban MR, Hegele RA, Baass A, Brunham LR (2020b) Polygenic contribution to low-density lipoprotein cholesterol levels and cardiovascular risk in monogenic familial hypercholesterolemia. Circulation 13:515–523

    CAS  PubMed  Google Scholar 

  • Tropf FC, Lee SH, Verweij RM, Stulp G, Van Der Most PJ, De Vlaming R, Bakshi A, Briley DA, Rahal C, Hellpap R (2017) Hidden heritability due to heterogeneity across seven populations. Nat Hum Behav 1:757–765

    Article  PubMed  PubMed Central  Google Scholar 

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    Article  CAS  PubMed  Google Scholar 

  • Verbeek R, Hoogeveen RM, Langsted A, Stiekema LC, Verweij SL, Hovingh GK, Wareham NJ, Khaw K-T, Boekholdt SM, Nordestgaard BG (2018) Cardiovascular disease risk associated with elevated lipoprotein (a) attenuates at low low-density lipoprotein cholesterol levels in a primary prevention setting. Eur Heart J 39:2589–2596

    Article  CAS  PubMed  Google Scholar 

  • Veturi Y, de Los CG, Yi N, Huang W, Vazquez AI, Kühnel B (2019) Modeling heterogeneity in the genetic architecture of ethnically diverse groups using random effect interaction models. Genetics 211:1395–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilhjálmsson BJ, Yang J, Finucane HK, Gusev A, Lindström S, Ripke S, Genovese G, Loh P-R, Bhatia G, Do R (2015) Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am J Hum Genet 97:576–592

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164–e164

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiss LA, Pan L, Abney M, Ober C (2006) The sex-specific genetic architecture of quantitative traits in humans. Nat Genet 38:218–222

    Article  CAS  PubMed  Google Scholar 

  • WHO (2021) World Health Organization; Cardiovascular diseases (CVDs)

  • Yadav ML, Mohapatra B (2018) Intergenic. In: Vonk J, Shackelford T (eds) Encyclopedia of Animal Cognition and Behavior. Springer, Cham. https://doi.org/10.1007/978-3-319-47829-6_64-1

  • Yan S, Qu X, Xu L, Che X, Ma Y, Zhang L, Teng Y, Zou H, Liu Y (2014) Bufalin enhances TRAIL-induced apoptosis by redistributing death receptors in lipid rafts in breast cancer cells. Anticancer Drugs 25:683–689

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC, Martin NG, Montgomery GW (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42:565–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88:76–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Im HK, Lee SH (2020) CORE GREML for estimating covariance between random effects in linear mixed models for complex trait analyses. Nat Commun 11:4208

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the staff and participants of the UK Biobank and Biobank Japan for their important contributions. Our reference number approved by UK Biobank is 14575. The analyses were performed using computational resources provided by the Australian Government through Gadi under the National Computational Merit Allocation Scheme (NCMAS), and HPCs (Statgen server) managed by UniSA IT.

Funding

This research is supported by the Australian Research Council (DP190100766).

Author information

Authors and Affiliations

Authors

Contributions

S.H.L. and M.M.M. conceived the idea. S.H.L. supervised the study. M.M.M performed quality control of the data and formal analysis. S.H.L and M.M.M wrote the first draft of the manuscript. X.Z., E.H and B.B. provided critical feedback, and key elements in interpreting the result. All authors provided critical feedback and suggestions. All the authors contributed to editing and approval of the final manuscript.

Corresponding authors

Correspondence to Md. Moksedul Momin or S. Hong Lee.

Ethics declarations

Conflict of interest

The authors declare that they do not have any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 482 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momin, M.M., Zhou, X., Hyppönen, E. et al. Cross-ancestry genetic architecture and prediction for cholesterol traits. Hum. Genet. (2024). https://doi.org/10.1007/s00439-024-02660-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00439-024-02660-7

Navigation