Skip to main content

Advertisement

Log in

Assessing efficiency of fine-mapping obesity-associated variants through leveraging ancestry architecture and functional annotation using PAGE and UKBB cohorts

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Inadequate representation of non-European ancestry populations in genome-wide association studies (GWAS) has limited opportunities to isolate functional variants. Fine-mapping in multi-ancestry populations should improve the efficiency of prioritizing variants for functional interrogation. To evaluate this hypothesis, we leveraged ancestry architecture to perform comparative GWAS and fine-mapping of obesity-related phenotypes in European ancestry populations from the UK Biobank (UKBB) and multi-ancestry samples from the Population Architecture for Genetic Epidemiology (PAGE) consortium with comparable sample sizes. In the investigated regions with genome-wide significant associations for obesity-related traits, fine-mapping in our ancestrally diverse sample led to 95% and 99% credible sets (CS) with fewer variants than in the European ancestry sample. Lead fine-mapped variants in PAGE regions had higher average coding scores, and higher average posterior probabilities for causality compared to UKBB. Importantly, 99% CS in PAGE loci contained strong expression quantitative trait loci (eQTLs) in adipose tissues or harbored more variants in tighter linkage disequilibrium (LD) with eQTLs. Leveraging ancestrally diverse populations with heterogeneous ancestry architectures, coupled with functional annotation, increased fine-mapping efficiency and performance, and reduced the set of candidate variants for consideration for future functional studies. Significant overlap in genetic causal variants across populations suggests generalizability of genetic mechanisms underpinning obesity-related traits across populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

PAGE accession numbers are: phs000356 PAGE collectively; phs000223 PAGE-ARIC and phs000280 ARIC Cohort; phs000555 PAGE-HCHS/SOL and phs000810 HCHS/SOL Cohort; phs000220 PAGE-MEC; phs000227 PAGE-WHI and phs000200 WHI Cohort; phs000925 PAGE-IPM-BioMe.

References

  • Akiyama K, Takeuchi F, Isono M, Chakrawarthy S, Nguyen QN, Wen W, Yamamoto K, Katsuya T, Kasturiratne A, Pham ST (2014) Systematic fine-mapping of association with BMI and type 2 diabetes at the FTO locus by integrating results from multiple ethnic groups. PLoS ONE 9:e101329

    Article  PubMed  PubMed Central  Google Scholar 

  • Asimit JL, Hatzikotoulas K, McCarthy M, Morris AP, Zeggini E (2016) Trans-ethnic study design approaches for fine-mapping. Eur J Hum Genet 24:1330–1336

    Article  PubMed  PubMed Central  Google Scholar 

  • Benner C, Spencer CC, Havulinna AS, Salomaa V, Ripatti S, Pirinen M (2016) FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32:1493–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bien SA, Wojcik GL, Zubair N, Gignoux CR, Martin AR, Kocarnik JM, Martin LW, Buyske S, Haessler J, Walker RW (2016) Strategies for enriching variant coverage in candidate disease loci on a multiethnic genotyping array. PLoS ONE 11:e0167758

    Article  PubMed  PubMed Central  Google Scholar 

  • Biobank U (2007) Protocol for a large-scale prospective epidemiological resource

  • Bongaerts M, Bonte R, Demirdas S, Huidekoper HH, Langendonk J, Wilke M, de Valk W, Blom HJ, Reinders MJ, Ruijter GJ (2022) Integration of metabolomics with genomics: metabolic gene prioritization using metabolomics data and genomic variant (CADD) scores. Mol Genet Metab 136:199–218

    Article  CAS  PubMed  Google Scholar 

  • Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, Delaneau O, O’Connell J (2017) Genome-wide genetic data on~ 500,000 UK Biobank participants. BioRxiv 166298

  • Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, Delaneau O, O’Connell J (2018) The UK Biobank resource with deep phenotyping and genomic data. Nature 562:203–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caballero A, Tenesa A, Keightley PD (2015) The nature of genetic variation for complex traits revealed by GWAS and regional heritability mapping analyses. Genetics 201:1601–1613

    Article  PubMed  PubMed Central  Google Scholar 

  • Carty CL, Bhattacharjee S, Haessler J, Cheng I, Hindorff LA, Aroda V, Carlson CS, Hsu C-N, Wilkens L, Liu S (2014) Analysis of metabolic syndrome components in > 15 000 African Americans identifies pleiotropic variants: results from the population architecture using genomics and epidemiology study. Circ Cardiovasc Genet 7:505–513

    Article  PubMed  PubMed Central  Google Scholar 

  • Challis B, Coll A, Yeo G, Pinnock S, Dickson S, Thresher R, Dixon J, Zahn D, Rochford J, White A (2004) Mice lacking pro-opiomelanocortin are sensitive to high-fat feeding but respond normally to the acute anorectic effects of peptide-YY3-36. Proc Natl Acad Sci 101:4695–4700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Larrabee BR, Ovsyannikova IG, Kennedy RB, Haralambieva IH, Poland GA, Schaid DJ (2015) Fine mapping causal variants with an approximate Bayesian method using marginal test statistics. Genetics 200:719–736

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen H-H, Petty LE, Bush W, Naj AC, Below JE (2019) GWAS and beyond: using omics approaches to interpret SNP associations. Curr Genet Med Rep 7:30–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen W, Wu Y, Zheng Z, Qi T, Visscher PM, Zhu Z, Yang J (2021) Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors. Nat Commun 12:1–10

    Article  Google Scholar 

  • Christakoudi S, Evangelou E, Riboli E, Tsilidis KK (2021) GWAS of allometric body-shape indices in UK Biobank identifies loci suggesting associations with morphogenesis, organogenesis, adrenal cell renewal and cancer. Sci Rep 11:1–18

    Article  Google Scholar 

  • Claussnitzer M, Dankel SN, Kim K-H, Quon G, Meuleman W, Haugen C, Glunk V, Sousa IS, Beaudry JL, Puviindran V (2015) FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med 373:895–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Consortium GP (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56

    Article  Google Scholar 

  • Consortium G (2020) The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369:1318–1330

    Article  Google Scholar 

  • Costa-Urrutia P, Abud C, Franco-Trecu V, Colistro V, Rodríguez-Arellano ME, Alvarez-Fariña R, Acuna Alonso V, Bertoni B, Granados J (2020) Effect of 15 BMI-associated polymorphisms, reported for Europeans, across ethnicities and degrees of Amerindian ancestry in Mexican children. Int J Mol Sci 21:374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daily JW, Park S (2017) Interaction of BDNF rs6265 variants and energy and protein intake in the risk for glucose intolerance and type 2 diabetes in middle-aged adults. Nutrition 33:187–194

    Article  CAS  PubMed  Google Scholar 

  • de Luis DA, Aller R, Izaola O, Primo D, Romero E (2017) rs10767664 gene variant in brain-derived neurotrophic factor is associated with diabetes mellitus type 2 in Caucasian females with obesity. Ann Nutr Metab 70:286–292

    Article  PubMed  Google Scholar 

  • de Luis DA, Ovalle HF, Izaola O, Primo D, Aller R (2018) RS 10767664 gene variant in Brain Derived Neurotrophic Factor (BDNF) affect metabolic changes and insulin resistance after a standard hypocaloric diet. J Diabetes Complicat 32:216–220

    Article  Google Scholar 

  • Delaneau O, Zagury J-F, Marchini J (2013) Improved whole-chromosome phasing for disease and population genetic studies. Nat Methods 10:5–6

    Article  CAS  PubMed  Google Scholar 

  • Duncan L, Shen H, Gelaye B, Meijsen J, Ressler K, Feldman M, Peterson R, Domingue B (2019) Analysis of polygenic risk score usage and performance in diverse human populations. Nat Commun 10:1–9

    Article  CAS  Google Scholar 

  • Emdin CA, Khera AV, Chaffin M, Klarin D, Natarajan P, Aragam K, Haas M, Bick A, Zekavat SM, Nomura A (2018) Analysis of predicted loss-of-function variants in UK Biobank identifies variants protective for disease. Nat Commun 9:1–8

    Article  CAS  Google Scholar 

  • Fernández-Rhodes L, Gong J, Haessler J, Franceschini N, Graff M, Nishimura KK, Wang Y, Highland HM, Yoneyama S, Bush WS (2017) Trans-ethnic fine-mapping of genetic loci for body mass index in the diverse ancestral populations of the Population Architecture using Genomics and Epidemiology (PAGE) Study reveals evidence for multiple signals at established loci. Hum Genet 136:771–800

    Article  PubMed  PubMed Central  Google Scholar 

  • Flister MJ, Tsaih S-W, O’Meara CC, Endres B, Hoffman MJ, Geurts AM, Dwinell MR, Lazar J, Jacob HJ, Moreno C (2013) Identifying multiple causative genes at a single GWAS locus. Genome Res 23:1996–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galinsky KJ, Reshef YA, Finucane HK, Loh PR, Zaitlen N, Patterson NJ, Brown BC, Price AL (2019) Estimating cross-population genetic correlations of causal effect sizes. Genet Epidemiol 43:180–188

    Article  PubMed  Google Scholar 

  • Gay NR, Gloudemans M, Antonio ML, Abell NS, Balliu B, Park Y, Martin AR, Musharoff S, Rao AS, Aguet F (2020) Impact of admixture and ancestry on eQTL analysis and GWAS colocalization in GTEx. Genome Biol 21:1–20

    Article  Google Scholar 

  • Giral H, Landmesser U, Kratzer A (2018) Into the wild: GWAS exploration of non-coding RNAs. Front Cardiovasc Med 5:181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gita PA, Leader M, Matmm-a MJ (2021) Manuscript analyses team member: heritability m, supplements, PHEWAS Matm, randomization MatmM, projection MatmP, prioritization g, 29 MatmgpFH (2021) Mapping the human genetic architecture of COVID-19. Nature 600:472–477

    Google Scholar 

  • Gong J, Schumacher F, Lim U, Hindorff LA, Haessler J, Buyske S, Carlson CS, Rosse S, Bůžková P, Fornage M (2013) Fine mapping and identification of BMI loci in African Americans. Am J Hum Genet 93:661–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorber SC, Tremblay MS (2010) The bias in self-reported obesity from 1976 to 2005: a Canada–US comparison. Obesity 18:354–361

    Article  Google Scholar 

  • Graff M, Ngwa JS, Workalemahu T, Homuth G, Schipf S, Teumer A, Völzke H, Wallaschofski H, Abecasis GR, Edward L (2013) Genome-wide analysis of BMI in adolescents and young adults reveals additional insight into the effects of genetic loci over the life course. Hum Mol Genet 22:3597–3607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinney A, Vogel CI, Hebebrand J (2010) From monogenic to polygenic obesity: recent advances. Eur Child Adolesc Psychiatry 19:297–310

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodge SE, Greenberg DA (2016) How can we explain very low odds ratios in GWAS? I Polygenic Models Human Heredity 81:173–180

    Article  CAS  PubMed  Google Scholar 

  • Horikoshi M, Mӓgi R, van de Bunt M, Surakka I, Sarin A-P, Mahajan A, Marullo L, Thorleifsson G, Hӓgg S, Hottenga J-J (2015) Discovery and fine-mapping of glycaemic and obesity-related trait loci using high-density imputation. PLoS Genet 11:e1005230

    Article  PubMed  PubMed Central  Google Scholar 

  • Hormozdiari F, Kostem E, Kang EY, Pasaniuc B, Eskin E (2014) Identifying causal variants at loci with multiple signals of association. Genetics 198:497–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Bien SA, Nishimura KK, Haessler J, Hodonsky CJ, Baldassari AR, Highland HM, Wang Z, Preuss M, Sitlani CM (2021) Multi-ethnic genome-wide association analyses of white blood cell and platelet traits in the Population Architecture using Genomics and Epidemiology (PAGE) study. BMC Genomics 22:1–11

    Google Scholar 

  • Huang QQ, Sallah N, Dunca D, Trivedi B, Hunt KA, Hodgson S, Lambert SA, Arciero E, Wright J, Griffiths C (2022) Transferability of genetic loci and polygenic scores for cardiometabolic traits in British Pakistani and Bangladeshi individuals. Nat Commun 13:1–11

    Google Scholar 

  • Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, Gu W, Kesterson RA, Boston BA, Cone RD (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88:131–141

    Article  CAS  PubMed  Google Scholar 

  • Kamiza AB, Toure SM, Vujkovic M, Machipisa T, Soremekun OS, Kintu C, Corpas M, Pirie F, Young E, Gill D (2022) Transferability of genetic risk scores in African populations. Nat Med 1–4

  • Kanai M, Ulirsch JC, Karjalainen J, Kurki M, Karczewski KJ, Fauman E, Wang QS, Jacobs H, Aguet F, Ardlie KG (2021) Insights from complex trait fine-mapping across diverse populations. medRxiv

  • Kanai M, Elzur R, Zhou W, Wu K-HH, Rasheed H, Tsuo K, Hirbo JB, Wang Y, Bhattacharya A, Zhao H (2022) Meta-analysis fine-mapping is often miscalibrated at single-variant resolution. Cell Genomics 100210

  • Kaur Y, De Souza R, Gibson W, Meyre D (2017) A systematic review of genetic syndromes with obesity. Obes Rev 18:603–634

    Article  CAS  PubMed  Google Scholar 

  • Kichaev G, Pasaniuc B (2015) Leveraging functional-annotation data in trans-ethnic fine-mapping studies. Am J Hum Genet 97:260–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kircher M, Witten DM, Jain P, O’roak BJ, Cooper GM, Shendure J (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46:310–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch L (2020) Exploring human genomic diversity with gnomAD. Nat Rev Genet 21:448–448

    Article  CAS  PubMed  Google Scholar 

  • Krude H, Biebermann H, Luck W, Horn R, Brabant G, Grüters A (1998) Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 19:155–157

    Article  CAS  PubMed  Google Scholar 

  • Laber S, Forcisi S, Bentley L, Petzold J, Moritz F, Smirnov KS, Al Sadat L, Williamson I, Strobel S, Agnew T (2021) Linking the FTO obesity rs1421085 variant circuitry to cellular, metabolic, and organismal phenotypes in vivo. Science Adv 7:eabg0108

    Article  CAS  Google Scholar 

  • Langlois C, Abadi A, Peralta-Romero J, Alyass A, Suarez F, Gomez-Zamudio J, Burguete-Garcia AI, Yazdi FT, Cruz M, Meyre D (2016) Evaluating the transferability of 15 European-derived fasting plasma glucose SNPs in Mexican children and adolescents. Sci Rep 6:1–8

    Article  Google Scholar 

  • Lin D-Y, Tao R, Kalsbeek WD, Zeng D, Gonzalez F II, Fernández-Rhodes L, Graff M, Koch GG, North KE, Heiss G (2014) Genetic association analysis under complex survey sampling: the Hispanic Community Health Study/Study of Latinos. Am J Hum Genet 95:675–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HY, Alyass A, Abadi A, Peralta-Romero J, Suarez F, Gomez-Zamudio J, Audirac A, Parra EJ, Cruz M, Meyre D (2019) Fine-mapping of 98 obesity loci in Mexican children. Int J Obes 43:23–32

    Article  Google Scholar 

  • Lv D, Zhang D-D, Wang H, Zhang Y, Liang L, Fu J-F, Xiong F, Liu G-L, Gong C-X, Luo F-H (2015) Genetic variations in SEC16B, MC4R, MAP2K5 and KCTD15 were associated with childhood obesity and interacted with dietary behaviors in Chinese school-age population. Gene 560:149–155

    Article  CAS  PubMed  Google Scholar 

  • Magavern EF, Gurdasani D, Ng FL, Lee SSJ (2022) Health equality, race and pharmacogenomics. Br J Clin Pharmacol 88:27–33

    Article  PubMed  Google Scholar 

  • Maier R, Akbari A, Wei X, Patterson N, Nielsen R, Reich D (2020) No statistical evidence for an effect of CCR5-∆ 32 on lifespan in the UK Biobank cohort. Nat Med 26:178–180

    Article  CAS  PubMed  Google Scholar 

  • Manolio TA (2009) Collaborative genome-wide association studies of diverse diseases: programs of the NHGRI’s office of population genomics

  • Mao L, Fang Y, Campbell M, Southerland WM (2017) Population differentiation in allele frequencies of obesity-associated SNPs. BMC Genomics 18:1–16

    Article  Google Scholar 

  • Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ (2019) Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet 51:584–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mather CA, Mooney SD, Salipante SJ, Scroggins S, Wu D, Pritchard CC, Shirts BH (2016) CADD score has limited clinical validity for the identification of pathogenic variants in noncoding regions in a hereditary cancer panel. Genet Med 18:1269–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matise TC, Ambite JL, Buyske S, Carlson CS, Cole SA, Crawford DC, Haiman CA, Heiss G, Kooperberg C, Marchand LL (2011) The Next PAGE in understanding complex traits: design for the analysis of Population Architecture Using Genetics and Epidemiology (PAGE) Study. Am J Epidemiol 174:849–859

    Article  PubMed  PubMed Central  Google Scholar 

  • McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P, Cunningham F (2016) The ensembl variant effect predictor. Genome Biol 17:1–14

    Article  Google Scholar 

  • Mei H, Yin B, Yang W, Zhang J, Lu H, Qi X, Mei W, Zhang H, Zhang J (2022) Associations between gene-gene interaction and overweight/obesity of 12-month-old Chinese infants. BioMed Res Int

  • Ng MC, Graff M, Lu Y, Justice AE, Mudgal P, Liu C-T, Young K, Yanek LR, Feitosa MF, Wojczynski MK (2017) Discovery and fine-mapping of adiposity loci using high density imputation of genome-wide association studies in individuals of African ancestry: African Ancestry Anthropometry Genetics Consortium. PLoS Genet 13:e1006719

    Article  PubMed  PubMed Central  Google Scholar 

  • Nono AD, Chen K, Liu X (2019) Comparison of different functional prediction scores using a gene-based permutation model for identifying cancer driver genes. BMC Med Genomics 12:35–49

    Article  Google Scholar 

  • Ocvirk V (2020) Molecular and cellular mechanisms underlying the GRB14/COBLL1 diabetes risk locus, Technische Universität München

  • Pasaniuc B, Price AL (2017) Dissecting the genetics of complex traits using summary association statistics. Nat Rev Genet 18:117–127

    Article  CAS  PubMed  Google Scholar 

  • Price AL, Butler J, Patterson N, Capelli C, Pascali VL, Scarnicci F, Ruiz-Linares A, Groop L, Saetta AA, Korkolopoulou P (2008) Discerning the ancestry of European Americans in genetic association studies. PLoS Genet 4:e236

    Article  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Przeworski M (2001) Linkage disequilibrium in humans: models and data. Am J Hum Genet 69:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis GR, Willer CJ (2010) LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26:2336–2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ralph P, Coop G (2013) The geography of recent genetic ancestry across Europe. PLoS Biol 11:e1001555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rentzsch P, Schubach M, Shendure J, Kircher M (2021) CADD-Splice—improving genome-wide variant effect prediction using deep learning-derived splice scores. Genome Med 13:1–12

    Article  Google Scholar 

  • Riancho JA (2012) Genome-wide association studies (GWAS) in complex diseases: advantages and limitations. Reumatol Clin 8:56–57

    Article  PubMed  Google Scholar 

  • Sahibdeen V, Crowther NJ, Soodyall H, Hendry LM, Munthali RJ, Hazelhurst S, Choudhury A, Norris SA, Ramsay M, Lombard Z (2018) Genetic variants in SEC16B are associated with body composition in black South Africans. Nutr Diabetes 8:1–10

    Article  CAS  Google Scholar 

  • Smemo S, Tena JJ, Kim K-H, Gamazon ER, Sakabe NJ, Gómez-Marín C, Aneas I, Credidio FL, Sobreira DR, Wasserman NF (2014) Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507:371–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staley JR, Blackshaw J, Kamat MA, Ellis S, Surendran P, Sun BB, Paul DS, Freitag D, Burgess S, Danesh J (2016) PhenoScanner: a database of human genotype–phenotype associations. Bioinformatics 32:3207–3209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12:e1001779

    Article  PubMed  PubMed Central  Google Scholar 

  • Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D (2019) Benefits and limitations of genome-wide association studies. Nat Rev Genet 20:467–484

    Article  CAS  PubMed  Google Scholar 

  • Tan L-J, Zhu H, He H, Wu K-H, Li J, Chen X-D, Zhang J-G, Shen H, Tian Q, Krousel-Wood M (2014) Replication of 6 obesity genes in a meta-analysis of genome-wide association studies from diverse ancestries. PLoS ONE 9:e96149

    Article  PubMed  PubMed Central  Google Scholar 

  • Trynka G, Sandor C, Han B, Xu H, Stranger BE, Liu XS, Raychaudhuri S (2013) Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat Genet 45:124–130

    Article  CAS  PubMed  Google Scholar 

  • van de Bunt M, Cortes A, Brown MA, Morris AP, McCarthy MI, Consortium I (2015) Evaluating the performance of fine-mapping strategies at common variant GWAS loci. PLoS Genet 11:e1005535

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Leeuwen EM, Kanterakis A, Deelen P, Kattenberg MV, Slagboom PE, de Bakker PI, Wijmenga C, Swertz MA, Boomsma DI (2015) Population-specific genotype imputations using minimac or IMPUTE2. Nat Protoc 10:1285–1296

    Article  PubMed  Google Scholar 

  • Vance KW, Sansom SN, Lee S, Chalei V, Kong L, Cooper SE, Oliver PL, Ponting CP (2014) The long non-coding RNA P aupar regulates the expression of both local and distal genes. EMBO J 33:296–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visscher PM, Brown MA, McCarthy MI, Yang J (2012) Five years of GWAS discovery. Am J Hum Genet 90:7–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakefield J (2007) A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am J Hum Genet 81:208–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakefield J (2009) Bayes factors for genome-wide association studies: comparison with P-values. Genet Epidemiol 33:79–86

    Article  PubMed  Google Scholar 

  • Wang D, Li J, Wang Y, Wang E (2022) A comparison on predicting functional impact of genomic variants. NAR Genomics Bioinform 4:lqab122

    Article  Google Scholar 

  • Wei X, Nielsen R (2019) CCR5-∆ 32 is deleterious in the homozygous state in humans. Nat Med 25:909–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L (2014) The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42:D1001–D1006

    Article  CAS  PubMed  Google Scholar 

  • Willems SM, Wright DJ, Day FR, Trajanoska K, Joshi PK, Morris JA, Matteini AM, Garton FC, Grarup N, Oskolkov N (2017) Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nat Commun 8:1–12

    Article  Google Scholar 

  • Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26:2190–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witte JS (2010) Genome-wide association studies and beyond. Annu Rev Public Health 31:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Broadaway KA, Raulerson CK, Scott LJ, Pan C, Ko A, He A, Tilford C, Fuchsberger C, Locke AE (2019) Colocalization of GWAS and eQTL signals at loci with multiple signals identifies additional candidate genes for body fat distribution. Hum Mol Genet 28:4161–4172

    Article  PubMed  PubMed Central  Google Scholar 

  • Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, Frayling TM, Hirschhorn J, Yang J, Visscher PM (2018) Meta-analysis of genome-wide association studies for height and body mass index in∼ 700000 individuals of European ancestry. Hum Mol Genet 27:3641–3649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y-M, Jia Z, Dunwell JM (2019) The applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits. Front Media SA 10:100

    Google Scholar 

  • Zhang X, Li T-Y, Xiao H-M, Ehrlich KC, Shen H, Deng H-W, Ehrlich M (2022) Epigenomic and transcriptomic prioritization of candidate obesity-risk regulatory GWAS SNPs. Int J Mol Sci 23:1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Zhang J, Ibrahim JG, Luo T, Santelli RC, Li Y, Li T, Shan Y, Zhu Z, Zhou F (2021) Large-scale GWAS reveals genetic architecture of brain white matter microstructure and genetic overlap with cognitive and mental health traits (n= 17,706). Mol Psychiatry 26:3943–3955

    Article  PubMed  Google Scholar 

  • Zhou W, Nielsen JB, Fritsche LG, Dey R, Gabrielsen ME, Wolford BN, LeFaive J, VandeHaar P, Gagliano SA, Gifford A (2018) Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat Genet 50:1335–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Masahiro. Kanai (mkanai@broadinstitute.org) for his contribution to data analyses, particularly with implementation of SLALOM.

Funding

This work was supported by UK Biobank application 25953. The PAGE Study is funded by the National Human Genome Research Institute with co-funding from the National Institute on Minority Health and Health Disparities. Assistance with data management, data integration, data dissemination, genotype imputation, ancestry deconvolution, population genetics, analysis pipelines and general study coordination was provided by the PAGE Coordinating Center (NI-HU01HG007419). Genotyping services were provided by the Center for Inherited Disease Research, which is fully funded through a federal contract from the National Institutes of Health (NIH) to The Johns Hopkins University, contract number HHSN268201200008I. Genotype data quality control and quality assurance services were provided by the Genetic Analysis Center in the Biostatistics Department of the University of Washington, through support provided by the Center for Inherited Disease Research contract. PAGE was also funded by grants R56HG010297 and R01HG010297. PAGE data and materials included in this report were funded through the following studies and organizations: The Mount Sinai BioMe Biobank is supported by The Andrea and Charles Bronfman Philanthropies. We thank all participants and all our recruiters who have assisted and continue to assist in data collection and management. We are grateful for the computational resources and staff expertise provided by Scientific Computing at the Icahn School of Medicine at Mount Sina. The MEC characterization of epidemiological architecture is funded through the NHGRI PAGE program (U01HG004802 and its NHGRI ARRA supplement). The MEC study is funded by the National Cancer Institute (R37CA54281, R01CA63, P01CA33619, U01CA136792 and U01CA98758). The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, and US Department of Health and Human Services through contracts 75N92021D00001, 75N92021D00002, 75N92021D00003, 75N92021D00004 and 75N92021D00005. The HCHS/SOL is a collaborative study supported by contracts from the National Heart, Lung and Blood Institute (NHLBI) to the University of North Carolina (HHSN268201300001I/N01-HC-65233), University of Miami (HHSN268201300004I/N01-HC-65234), Albert Einstein College of Medicine (HHSN268201300002I / N01-HC 65235), University of Illinois at Chicago (HHSN268201300003I/N01-HC-65236 Northwestern University), and San Diego State University (HHSN268201300005I/N01-HC-65237). The following Institutes/Centers/Offices have contributed to the HCHS/SOL through a transfer of funds to the NHLBI: National Institute on Minority Health and Health Disparities; National Institute on Deafness and Other Communication Disorders; National Institute of Dental and Craniofacial Research; National Institute of Diabetes and Digestive and Kidney Diseases; National Institute of Neurological Disorders and Stroke; and NIH Institution-Office of Dietary Supplements. The Genetic Analysis Center at the University of Washington was supported by NHLBI and NIDCR contracts (HHSN268201300005C AM03 and MOD03. The Atherosclerosis Risk in Communities (ARIC) study has been funded in whole or in part with Federal funds from the National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services (contract numbers HHSN268201700001I, HHSN268201700002I, HHSN268201700003I, HHSN268201700004I and HHSN268201700005I), R01HL087641, R01HL059367 and R01HL086694; National Human Genome Research Institute contract U01HG004402; and National Institutes of Health contract HHSN268200625226C. The authors thank the staff and participants of the ARIC study for their important contributions. Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of Health and NIH Roadmap for Medical Research. The Coronary Artery Risk Development in Young Adults Study (CARDIA): The Coronary Artery Risk Development in Young Adults Study (CARDIA) is supported by contracts HHSN268201800003I, HHSN268201800004I, HHSN268201800005I, HHSN268201800006I, and HHSN268201800007I from the National Heart, Lung, and Blood Institute (NHLBI). CARDIA is also partially supported by the Intramural Research Program of the National Institute on Aging (NIA) and an intra-agency agreement between NIA and NHLBI (AG0005). GWAS genotyping and data analyses were funded in part by grants U01-HG004729 and R01-HL093029 from the National Institutes of Health to Dr. Myriam Fornage. The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services through contracts 75N92021D00001, 75N92021D00002, 75N92021D00003, 75N92021D00004, 75N92021D00005. MYA is funded by NIDDK grant # 3R01DK122503-02W1. Kari North is supported by R01HD057194, R01 DK122503, R01HG010297, R01HL142302, R01HL143885, R01HG009974, and R01DK101855. The following grants supported this study: R01HL151152 (North, Graff), R01HG011345 (North, Graff).

Author information

Authors and Affiliations

Authors

Contributions

MYA, MG, KEN participated in the study conception. MYA and MG performed data analyses. MYA, MG, and KEN drafted the manuscript. All co-authors performed critical reviews. KEN and MG supervised the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohammad Yaser Anwar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethics approval and consent to participate

All study participants provided written informed consent and each study was approved by relevant institutional review board. All methods were performed in accordance with the relevant guidelines and regulations set by Declaration of Helsinki. HCHS/SOL- The institutional review board at the coordinating center (University of North Carolina Office of Human Research Ethics, 07-1003) and Board Office, 200601-0471; University of California-San Diego Human Research Protection Program, 3677; University of Miami Human Subject Research Office, FWA00002247) approved study protocols. All participants gave informed consent. BioMe- Program for the Protection of Human Subjects, Mount Sinai Health System, Icahn School of Medicine at Mount Sinai. CARDIA- University of Texas Health Science Center at Houston. WHI- Fred Hutchison Cancer Research Center. ARIC- The Johns Hopkins Medicine Institutional Review Board. Cameron County- Committee for the Protection of Human Subjects at the University of Teas Health Sciences Center at Houston; Human Research Protections Program at Vanderbilt University. MEC- USC Institutional Review Board.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anwar, M.Y., Graff, M., Highland, H.M. et al. Assessing efficiency of fine-mapping obesity-associated variants through leveraging ancestry architecture and functional annotation using PAGE and UKBB cohorts. Hum. Genet. 142, 1477–1489 (2023). https://doi.org/10.1007/s00439-023-02593-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-023-02593-7

Navigation