Skip to main content

Advertisement

Log in

H2A monoubiquitination: insights from human genetics and animal models

  • Review
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Metazoan development arises from spatiotemporal control of gene expression, which depends on epigenetic regulators like the polycomb group proteins (PcG) that govern the chromatin landscape. PcG proteins facilitate the addition and removal of histone 2A monoubiquitination at lysine 119 (H2AK119ub1), which regulates gene expression, cell fate decisions, cell cycle progression, and DNA damage repair. Regulation of these processes by PcG proteins is necessary for proper development, as pathogenic variants in these genes are increasingly recognized to underly developmental disorders. Overlapping features of developmental syndromes associated with pathogenic variants in specific PcG genes suggest disruption of central developmental mechanisms; however, unique clinical features observed in each syndrome suggest additional non-redundant functions for each PcG gene. In this review, we describe the clinical manifestations of pathogenic PcG gene variants, review what is known about the molecular functions of these gene products during development, and interpret the clinical data to summarize the current evidence toward an understanding of the genetic and molecular mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

No novel data to share.

References

  • Abdel-Wahab O, Gao J, Adli M et al (2013) Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo Conditional deletion of Asxl1 results in MDS. J Exp Med 210(12):2641–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akasaka T, Kanno M, Balling R, Mieza MA, Taniguchi M, Koseki H (1996) A role for mel-18, a Polycomb group-related vertebrate gene, during the anteroposterior specification of the axial skeleton. Development 122(5):1513–1522

    Article  CAS  PubMed  Google Scholar 

  • Arlotta P, Hobert O (2015) Homeotic transformations of neuronal cell identities. Trends Neurosci 38(12):751–762

    Article  CAS  PubMed  Google Scholar 

  • Awad S, Al-Dosari MS, Al-Yacoub N et al (2013) Mutation in PHC1 implicates chromatin remodeling in primary microcephaly pathogenesis. Hum Mol Genet 22(11):2200–2213

    Article  CAS  PubMed  Google Scholar 

  • Baskind HA, Na L, Ma Q, Patel MP, Geenen DL, Wang QT (2009) Functional conservation of Asxl2, a murine homolog for the Drosophila enhancer of trithorax and polycomb group gene Asx. PLoS ONE 4(3):e4750

    Article  PubMed  PubMed Central  Google Scholar 

  • Baymaz HI, Fournier A, Laget S et al (2014) MBD5 and MBD6 interact with the human PR-DUB complex through their methyl-CpG-binding domain. Proteomics 14(19):2179–2189

    Article  CAS  PubMed  Google Scholar 

  • Bedogni F, Hodge RD, Elsen GE et al (2010) Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex. Proc Natl Acad Sci 107(29):13129–13134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beunders G, Voorhoeve E, Golzio C et al (2013) Exonic deletions in AUTS2 cause a syndromic form of intellectual disability and suggest a critical role for the C terminus. Am J Hum Genet 92(2):210–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beunders G, De Munnik SA, Van der Aa N et al (2015) Two male adults with pathogenic AUTS2 variants, including a two-base pair deletion, further delineate the AUTS2 syndrome. Eur J Hum Genet 23(6):803–807

    Article  CAS  PubMed  Google Scholar 

  • Beunders G, Van De Kamp J, Vasudevan P et al (2016) A detailed clinical analysis of 13 patients with AUTS2 syndrome further delineates the phenotypic spectrum and underscores the behavioural phenotype. J Med Genet 53(8):523–532

    Article  CAS  PubMed  Google Scholar 

  • Biel A, Castanza AS, Rutherford R et al (2022) AUTS2 syndrome: molecular mechanisms and model systems. Published online, Front Mol Neurosci

    Google Scholar 

  • Blackledge NP, Farcas AM, Kondo T et al (2014) Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 157(6):1445–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bölicke N, Albert M (2022) Polycomb-mediated gene regulation in human brain development and neurodevelopmental disorders. Dev Neurobiol 82(4):345–363

    Article  PubMed  Google Scholar 

  • Bravo M, Nicolini F, Starowicz K et al (2015) Polycomb RING1A-and RING1B-dependent histone H2A monoubiquitylation at pericentromeric regions promotes S-phase progression. J Cell Sci 128(19):3660–3671

    CAS  PubMed  Google Scholar 

  • Buchwald G, van der Stoop P, Weichenrieder O, Perrakis A, van Lohuizen M, Sixma TK (2006) Structure and E3-ligase activity of the Ring-Ring complex of Polycomb proteins Bmi1 and Ring1b. EMBO J 25(11):2465–2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campagne A, Lee MK, Zielinski D et al (2019) BAP1 complex promotes transcription by opposing PRC1-mediated H2A ubiquitylation. Nat Commun 10(1):1–15

    Article  Google Scholar 

  • Carlston CM, O’Donnell-Luria AH, Underhill HR et al (2017) Pathogenic ASXL1 somatic variants in reference databases complicate germline variant interpretation for Bohring-Opitz Syndrome. Hum Mutat 38(5):517–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dauber KL, Perdigoto CN, Valdes VJ, Santoriello FJ, Cohen I, Ezhkova E (2016) Dissecting the roles of polycomb repressive complex 2 subunits in the control of skin development. J Invest Dermatol 136(8):1647–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • del Mar Lorente M, Marcos-Gutiérrez C, Pére C, et al (2000) Loss-and gain-of-function mutations show a polycomb group function for Ring1A in mice. Development 127(23):5093–5100

    Article  Google Scholar 

  • Di Lullo E, Kriegstein AR (2017) The use of brain organoids to investigate neural development and disease. Nat Rev Neurosci 18(10):573–584

    Article  PubMed  PubMed Central  Google Scholar 

  • Doyle EJ, Morey L, Conway E (2022a) Know when to fold em: polycomb complexes in oncogenic 3D genome regulation. Front Cell Dev Biol. 10:1756

    Article  Google Scholar 

  • Dey A, Seshasayee D, Noubade R, French DM, Liu J, Chaurushiya MS, Kirkpatrick DS, Pham VC, Lill JR, Bakalarski CE, Jiansheng W, Phu L, Katavolos P, LaFave LM, Abdel-Wahab O, Modrusan Z, Seshagiri S, Dong K, Lin Z, Balazs M, Suriben R, Newton K, Hymowitz S, Garcia-Manero G, Martin Fl, Levine RL, Dixit VM (2012) Loss of the tumor suppressor BAP1 causes myeloid transformation. Science 337(6101):1541–1546. https://doi.org/10.1126/science.1221711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle LA, Unlu Bektas F, Chatzantonaki E, Repton C, Derrien A, Illingworth RS (2022b) RINGs, DUBs and Abnormal Brain Growth—Histone H2A Ubiquitination in Brain Development and Disease. Epigenomes 6(4):42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efthymiou S, Salpietro V, Pironti E et al (2019) A de novo truncating mutation in ASXL1 associated with segmental overgrowth. J Genet 98(5):1–5

    Article  Google Scholar 

  • Ercoskun P, Yuce Kahraman C, Adanur Saglam K, Kanjee M, Tatar A (2022) A new case of Turnpenny-Fry syndrome. Am J Med Genet A 188(2):688–691

    Article  CAS  PubMed  Google Scholar 

  • Eskeland R, Leeb M, Grimes GR et al (2010) Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol Cell 38(3):452–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahrner JA, Bjornsson HT (2019) Mendelian disorders of the epigenetic machinery: postnatal malleability and therapeutic prospects. Hum Mol Genet 28(R2):R254–R264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fair SR, Schwind W, Julian DL et al (2023) Cerebral organoids containing an AUTS2 missense variant model microcephaly. Brain 146(1):387–404

    Article  PubMed  Google Scholar 

  • Farcas AM, Blackledge NP, Sudbery I et al (2012) KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands. Elife 1:00205

    Article  Google Scholar 

  • Francis NJ, Kingston RE, Woodcock CL (2004) Chromatin compaction by a polycomb group protein complex. Science 306(5701):1574–1577

    Article  CAS  PubMed  Google Scholar 

  • Fursova NA, Blackledge NP, Nakayama M et al (2019) Synergy between variant PRC1 complexes defines polycomb-mediated gene repression. Mol Cell 74(5):1020–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gafner M, Michelson M, Argilli E et al (2022) Major brain malformations: corpus callosum dysgenesis, agenesis of septum pellucidum and polymicrogyria in patients with BCORL1-related disorders. J Hum Genet 67(2):95–101

    Article  CAS  PubMed  Google Scholar 

  • Ganna A, Genovese G, Howrigan DP et al (2016) Ultra-rare disruptive and damaging mutations influence educational attainment in the general population. Nat Neurosci 19(12):1563–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Zhang J, Bonasio R et al (2012) PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol Cell 45(3):344–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Lee P, Stafford JM, Von Schimmelmann M, Schaefer A, Reinberg D (2014) An AUTS2–Polycomb complex activates gene expression in the CNS. Nature 516(7531):349–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmore EC, Walsh CA (2013) Genetic causes of microcephaly and lessons for neuronal development. Wiley Interdiscip Rev Dev Biol 2(4):461–478

    Article  CAS  PubMed  Google Scholar 

  • Ginjala V, Nacerddine K, Kulkarni A et al (2011) BMI1 is recruited to DNA breaks and contributes to DNA damage-induced H2A ubiquitination and repair. Mol Cell Biol 31(10):1972–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein AM (2011) Germline BAP1 mutations and tumor susceptibility. Nat Genet 43(10):925–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herculano-Houzel S, Mota B, Lent R (2006) Cellular scaling rules for rodent brains. Proc Natl Acad Sci 103(32):12138–12143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoischen A, van Bon BW, Rodríguez-Santiago B et al (2011) De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome. Nat Genet 43(8):729–731

    Article  CAS  PubMed  Google Scholar 

  • Hori K, Nagai T, Shan W et al (2014) Cytoskeletal regulation by AUTS2 in neuronal migration and neuritogenesis. Cell Rep 9(6):2166–2179

    Article  CAS  PubMed  Google Scholar 

  • Hori K, Shimaoka K, Hoshino M (2021) AUTS2 gene: keys to understanding the pathogenesis of neurodevelopmental disorders. Cells 11(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  • Illingworth RS, Moffat M, Mann AR et al (2015) The E3 ubiquitin ligase activity of RING1B is not essential for early mouse development. Genes Dev 29(18):1897–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue D, Matsumoto M, Nagase R et al (2016) Truncation mutants of ASXL1 observed in myeloid malignancies are expressed at detectable protein levels. Exp Hematol 44(3):172–176

    Article  CAS  PubMed  Google Scholar 

  • Ishida A, Asano H, Hasegawa M et al (1993) Cloning and chromosome mapping of the human Mel-18 gene which encodes a DNA-binding protein with a new ‘RING-finger’ motif. Gene 129(2):249–255

    Article  CAS  PubMed  Google Scholar 

  • Ismail IH, Andrin C, McDonald D, Hendzel MJ (2010) BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair. J Cell Biol 191(1):45–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismail IH, McDonald D, Strickfaden H, Xu Z, Hendzel MJ (2013) A small molecule inhibitor of polycomb repressive complex 1 inhibits ubiquitin signaling at DNA double-strand breaks. J Biol Chem 288(37):26944–26954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isono K, Endo TA, Ku M et al (2013) SAM domain polymerization links subnuclear clustering of PRC1 to gene silencing. Dev Cell 26(6):565–577

    Article  CAS  PubMed  Google Scholar 

  • Jensen DE, Rauscher FJ III (1999) Defining biochemical functions for the BRCA1 tumor suppressor protein: analysis of the BRCA1 binding protein BAP1. Cancer Lett 143:S13–S17

    Article  CAS  PubMed  Google Scholar 

  • Jiao Z, Zhao X, Wang Y et al (2022) A de novo and novel nonsense variants in ASXL2 gene is associated with Shashi-Pena syndrome. Eur J Med Genet 65(4):104454

    Article  CAS  PubMed  Google Scholar 

  • Junco SE, Wang R, Gaipa JC et al (2013) Structure of the polycomb group protein PCGF1 in complex with BCOR reveals basis for binding selectivity of PCGF homologs. Structure 21(4):665–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadariya Y, Cheung M, Xu J et al (2016) Bap1 is a bona fide tumor suppressor: genetic evidence from mouse models carrying heterozygous germline Bap1 mutations. Cancer Res 76(9):2836–2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakarougkas A, Ismail A, Chambers AL et al (2014) Requirement for PBAF in transcriptional repression and repair at DNA breaks in actively transcribed regions of chromatin. Mol Cell 55(5):723–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karczewski KJ, Francioli LC, Tiao G et al (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581(7809):434–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobrinski DA, Yang H, Kittaneh M (2020) BAP1: role in carcinogenesis and clinical implications. Transl Lung Cancer Res 9(Suppl 1):S60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolovos P, Nishimura K, Sankar A et al (2020) PR-DUB maintains the expression of critical genes through FOXK1/2-and ASXL1/2/3-dependent recruitment to chromatin and H2AK119ub1 deubiquitination. Genome Res 30(8):1119–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kundu S, Ji F, Sunwoo H et al (2017) Polycomb repressive complex 1 generates discrete compacted domains that change during differentiation. Mol Cell 65(3):432–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Küry S, Ebstein F, Mollé A et al (2022) Rare germline heterozygous missense variants in BRCA1-associated protein 1, BAP1, cause a syndromic neurodevelopmental disorder. Am J Hum Genet 109(2):361–372

    Article  PubMed  PubMed Central  Google Scholar 

  • Lai HL, Grachoff M, McGinley AL et al (2012) Maintenance of adult cardiac function requires the chromatin factor Asxl2. J Mol Cell Cardiol 53(5):734–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SC, Toth Z (2022) PRC1-independent binding and activity of RYBP on the KSHV genome during de novo infection. PLoS Pathog 18(8):e1010801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HG, Kahn TG, Simcox A, Schwartz YB, Pirrotta V (2015) Genome-wide activities of Polycomb complexes control pervasive transcription. Genome Res 25(8):1170–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leon E, Diaz J, Castilla-Vallmanya L, Grinberg D, Balcells S, Urreizti R (2020) Extending the phenotypic spectrum of Bohring-Opitz syndrome: mild case confirmed by functional studies. Am J Med Genet A 182(1):201–204

    Article  PubMed  Google Scholar 

  • Lewis BP, Green RE, Brenner SE (2003) Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci 100(1):189–192

    Article  CAS  PubMed  Google Scholar 

  • Li M, Collins R, Jiao Y et al (2011) Somatic mutations in the transcriptional corepressor gene BCORL1 in adult acute myelogenous leukemia. Blood J Am Soc Hematol 118(22):5914–5917

    CAS  Google Scholar 

  • Li H, Liefke R, Jiang J et al (2017) Polycomb-like proteins link the PRC2 complex to CpG islands. Nature 549(7671):287–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Aldinger KA, Cheng CV et al (2021) NRF1 association with AUTS2-Polycomb mediates specific gene activation in the brain. Mol Cell 81(22):4663–4676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo X, Schoch K, Jangam SV et al (2021) Rare deleterious de novo missense variants in RNF2/RING2 are associated with a neurodevelopmental disorder with unique clinical features. Hum Mol Genet 30(14):1283–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machour FE, Ayoub N (2020) Transcriptional regulation at DSBs: mechanisms and consequences. Trends Genet 36(12):981–997

    Article  CAS  PubMed  Google Scholar 

  • Matheus F, Rusha E, Rehimi R et al (2019) Pathological ASXL1 mutations and protein variants impair neural crest development. Stem Cell Rep 12(5):861–868

    Article  CAS  Google Scholar 

  • McGinty RK, Henrici RC, Tan S (2014) Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome. Nature 514(7524):591–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGrath BT, Wu P, Salvi S et al (1826) ASXL3 controls cortical neuron fate specification through extrinsic self-renewal pathways. BioRxiv. 2021:127

    Google Scholar 

  • Micol JB, Duployez N, Boissel N et al (2014) Frequent ASXL2 mutations in acute myeloid leukemia patients with t (8; 21)/RUNX1-RUNX1T1 chromosomal translocations. Blood J Am Soc Hematol 124(9):1445–1449

    CAS  Google Scholar 

  • Monderer-Rothkoff G, Tal N, Risman M et al (2021) AUTS2 isoforms control neuronal differentiation. Mol Psychiatry 26(2):666–681

    Article  PubMed  Google Scholar 

  • Morimoto-Suzki N, Hirabayashi Y, Tyssowski K et al (2014) The polycomb component Ring1B regulates the timed termination of subcerebral projection neuron production during mouse neocortical development. Development 141(22):4343–4353

    Article  CAS  PubMed  Google Scholar 

  • Muthusamy B, Bellad A, Girimaji SC, Pandey A (2021) Shukla-Vernon syndrome: a second family with a novel variant in the BCORL1 gene. Genes 12(3):452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Notwell JH, Heavner WE, Darbandi SF et al (2016) TBR1 regulates autism risk genes in the developing neocortex. Genome Res 26(8):1013–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta H, Sawada A, Kim JY et al (2002) Polycomb group gene rae28 is required for sustaining activity of hematopoietic stem cells. J Exp Med 195(6):759–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oksenberg N, Stevison L, Wall JD, Ahituv N (2013) Function and regulation of AUTS2, a gene implicated in autism and human evolution. PLoS Genet 9(1):e1003221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagan JK, Arnold J, Hanchard KJ et al (2007) A novel corepressor, BCoR-L1, represses transcription through an interaction with CtBP. J Biol Chem 282(20):15248–15257

    Article  CAS  PubMed  Google Scholar 

  • Pengelly AR, Kalb R, Finkl K, Müller J (2015) Transcriptional repression by PRC1 in the absence of H2A monoubiquitylation. Genes Dev 29(14):1487–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira JD, Sansom SN, Smith J, Dobenecker MW, Tarakhovsky A, Livesey FJ (2010) Ezh2, the histone methyltransferase of PRC2, regulates the balance between self-renewal and differentiation in the cerebral cortex. Proc Natl Acad Sci 107(36):15957–15962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Garcia V, Fineberg E, Wilson R et al (2018) Placentation defects are highly prevalent in embryonic lethal mouse mutants. Nature 555(7697):463–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Garcia V, Lea G, Lopez-Jimenez P et al (2021) BAP1/ASXL complex modulation regulates epithelial-mesenchymal transition during trophoblast differentiation and invasion. Elife 10:e63254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce SB, Stewart MD, Gulsuner S et al (2018) De novo mutation in RING1 with epigenetic effects on neurodevelopment. Proc Natl Acad Sci 115(7):1558–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piunti A, Shilatifard A (2021) The roles of Polycomb repressive complexes in mammalian development and cancer. Nat Rev Mol Cell Biol 22(5):326–345

    Article  CAS  PubMed  Google Scholar 

  • Rockel A, Hiorns RW, Powell T (1980) The basic uniformity in structure of the neocortex. Brain J Neurol 103(2):221–244

    Article  CAS  Google Scholar 

  • Rose NR, King HW, Blackledge NP et al (2016) RYBP stimulates PRC1 to shape chromatin-based communication between Polycomb repressive complexes. Elife 5:e18591

    Article  PubMed  PubMed Central  Google Scholar 

  • Russell B, Johnston JJ, Biesecker LG et al (2015) Clinical management of patients with ASXL1 mutations and Bohring-Opitz syndrome, emphasizing the need for Wilms tumor surveillance. Am J Med Genet A 167(9):2122–2131

    Article  CAS  Google Scholar 

  • Russell B, Graham JM (2013) Expanding our knowledge of conditions associated with the ASXL gene family. Genome Med 5:16. https://doi.org/10.1186/gm420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Jimeno C, Blanco-Kelly F, López-Grondona F et al (2021) Attention deficit hyperactivity and autism spectrum disorders as the core symptoms of AUTS2 syndrome: Description of five new patients and update of the frequency of manifestations and genotype-phenotype correlation. Genes 12(9):1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaefer EJ, Wang HC, Karp HQ et al (2022) BCOR and BCORL1 mutations drive epigenetic reprogramming and oncogenic signaling by unlinking PRC1 1 from target genes. Blood Cancer Discov. 3(2):116–135

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheuermann JC, de Ayala Alonso AG, Oktaba K et al (2010) Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature 465(7295):243–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schirwani S, Albaba S, Carere DA et al (2021) Expanding the phenotype of ASXL3-related syndrome: a comprehensive description of 45 unpublished individuals with inherited and de novo pathogenic variants in ASXL3. Am J Med Genet A 185(11):3446–3458

    Article  CAS  PubMed  Google Scholar 

  • Shashi V, Pena LD, Kim K et al (2016) De novo truncating variants in ASXL2 are associated with a unique and recognizable clinical phenotype. Am J Hum Genet 99(4):991–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla V, Rao M, Zhang H, Beers J, Wangsa D, Wangsa D, Buishand FO, Wang Y, Zhiya Y, Stevenson HS, Reardon ES, McLoughlin KC, Kaufman AS, Payabyab EC, Hong JA, Zhang M, Davis S, Edelman D, Chen G, Miettinen MM, Restifo NP, Ried T, Meltzer PA, Schrump DS (2017) ASXL3 is a novel pluripotency factor in human respiratory epithelial cells and a potential therapeutic target in small cell lung cancer abstract. Cancer Research 77(22):6267–6281. https://doi.org/10.1158/0008-5472.CAN-17-0570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla A, Girisha KM, Somashekar PH, Nampoothiri S, McClellan R, Vernon HJ (2019) Variants in the transcriptional corepressor BCORL1 are associated with an X-linked disorder of intellectual disability, dysmorphic features, and behavioral abnormalities. Am J Med Genet A 179(5):870–874

    Article  CAS  PubMed  Google Scholar 

  • Sportoletti P, Sorcini D, Falini B (2021) BCOR gene alterations in hematologic diseases. Blood 138(24):2455–2468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava A, Ritesh K, Tsan YC et al (2016) De novo dominant ASXL3 mutations alter H2A deubiquitination and transcription in Bainbridge-Ropers syndrome. Hum Mol Genet 25(3):597–608

    Article  CAS  PubMed  Google Scholar 

  • Srivastava A, Brian M, Stephanie LB (2017) Histone H2A monoubiquitination in neurodevelopmental Disorders. Trends Genet 33(8):566–578. https://doi.org/10.1016/j.tig.2017.06.002

    Article  CAS  PubMed  Google Scholar 

  • Stock JK, Giadrossi S, Casanova M et al (2007) Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat Cell Biol 9(12):1428–1435

    Article  CAS  PubMed  Google Scholar 

  • Sultana R, Chang-En Y, Jun Y, Munson J, Chen D, Hua W, Estes A, Cortes F, de la Barra F, Dongmei Y, Haider ST, Trask BJ, Green ED, Raskind WH, Disteche CM, Wijsman E, Dawson G, Storm DR, Schellenberg GD, Villacres EC (2002) Identification of a novel gene on chromosome 7q11.2 interrupted by a translocation breakpoint in a pair of autistic twins. Genomics 80(2):129–134. https://doi.org/10.1006/geno.2002.6810

    Article  CAS  PubMed  Google Scholar 

  • Szczepanski AP, Wang L (2021) Emerging multifaceted roles of BAP1 complexes in biological processes. Cell Death Discov 7(1):1–10

    Article  Google Scholar 

  • Szczepanski AP, Zhao Z, Sosnowski T, Goo YA, Bartom ET, Wang L (2020) ASXL3 bridges BRD4 to BAP1 complex and governs enhancer activity in small cell lung cancer. Genome Med 12(1):1–20

    Article  Google Scholar 

  • Takihara Y, Tomotsune D, Shirai M et al (1997) Targeted disruption of the mouse homologue of the Drosophila polyhomeotic gene leads to altered anteroposterior patterning and neural crest defects. Development 124(19):3673–3682

    Article  CAS  PubMed  Google Scholar 

  • Tamburri S, Lavarone E, Fernández-Pérez D et al (2020) Histone H2AK119 mono-ubiquitination is essential for polycomb-mediated transcriptional repression. Mol Cell 77(4):840–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatton-Brown K, Loveday C, Yost S et al (2017) Mutations in epigenetic regulation genes are a major cause of overgrowth with intellectual disability. Am J Hum Genet 100(5):725–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavares L, Dimitrova E, Oxley D et al (2012) RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell 148(4):664–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Testa JR, Cheung M, Pei J et al (2011) Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet 43(10):1022–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuboi M, Kishi Y, Yokozeki W, Koseki H, Hirabayashi Y, Gotoh Y (2018) Ubiquitination-independent repression of PRC1 targets during neuronal fate restriction in the developing mouse neocortex. Dev Cell 47(6):758–772

    Article  CAS  PubMed  Google Scholar 

  • Tsuboyama N, Wang R, Szczepanski AP et al (2022) Therapeutic targeting of BAP1/ASXL3 sub-complex in ASCL1-dependent small cell lung cancer. Oncogene 41(15):2152–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnpenny PD, Wright MJ, Sloman M et al (2018) Missense mutations of the Pro65 residue of PCGF2 cause a recognizable syndrome associated with craniofacial, neurological, cardiovascular, and skeletal features. Am J Hum Genet 103(5):786–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhlén M, Fagerberg L, Hallström BM et al (2015) Proteomics Tissue-based map of the human proteome. Sci 347:1260419–1260419

    Article  Google Scholar 

  • Voncken JW, Roelen BA, Roefs M et al (2003) Rnf2 (Ring1b) deficiency causes gastrulation arrest and cell cycle inhibition. Proc Natl Acad Sci 100(5):2468–2473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Geng Z, Gong Y et al (2018) WDR68 is essential for the transcriptional activation of the PRC1-AUTS2 complex and neuronal differentiation of mouse embryonic stem cells. Stem Cell Res 33:206–214

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Birch NW, Zhao Z et al (2021) Epigenetic targeted therapy of stabilized BAP1 in ASXL1 gain-of-function mutated leukemia. Nat Cancer 2(5):515–526

    Article  PubMed  Google Scholar 

  • Wiel L, Baakman C, Gilissen D, Veltman JA, Vriend G, Gilissen C (2019) MetaDome: Pathogenicity analysis of genetic variants through aggregation of homologous human protein domains. Hum Mutat 40(8):1030–1038

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiesner T, Obenauf AC, Murali R et al (2011) Germline mutations in BAP1 predispose to melanocytic tumors. Nat Genet 43(10):1018–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong SJ, Gearhart MD, Taylor AB et al (2016) KDM2B recruitment of the polycomb group complex, PRC1 1, requires cooperation between PCGF1 and BCORL1. Structure 24(10):1795–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Wells AB, O’Brien DR, Nehorai A, Dougherty JD (2014) Cell type-specific expression analysis to identify putative cellular mechanisms for neurogenetic disorders. J Neurosci 34(4):1420–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto Y, Abe A, Emi N (2014) Clarifying the impact of polycomb complex component disruption in human cancers impact of bcor and bcorl1 disruption in human cancers. Mol Cancer Res 12(4):479–484

    Article  CAS  PubMed  Google Scholar 

  • Yamashiro K, Hori K, Lai ES et al (2020) AUTS2 governs cerebellar development, Purkinje cell maturation, motor function and social communication. Iscience 23(12):101820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Mashtalir N, Daou S et al (2010) The ubiquitin carboxyl hydrolase BAP1 forms a ternary complex with YY1 and HCF-1 and is a critical regulator of gene expression. Mol Cell Biol 30(21):5071–5085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao W, Hu X, Liu Y et al (2021) A de novo variant of ASXL1 is associated with an atypical phenotype of Bohring-Opitz syndrome: case report and literature review. Front Pediatr. https://doi.org/10.3389/fped.2021.678615

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Zhu P, Wang J et al (2008) Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol Cell 29(1):69–80

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human development (R01AWD010411 to SLB), National Institute of Neurological Disorders and Stroke (R01NS101597 to SLB), Leo's Lighthouse Foundation to SLB, NIH Cellular and Molecular Biology Training Grant (T32-GM007315 to CWR), NRSA Fellowship Grant (F31NS127551 to CWR), MSTP (T32GM007863 to CWR), and Neuroscience training grant (T32-NS076401 to ERP).

Funding

This work was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human development (R01AWD010411 to SLB), National Institute of Neurological Disorders and Stroke (R01NS101597 to SLB), Leo's Lighthouse Foundation to SLB, NIH Cellular and Molecular Biology Training Grant (T32-GM007315 to CWR), NRSA Fellowship Grant (F31NS127551 to CWR), MSTP (T32GM007863 to CWR), and Neuroscience training grant (T32-NS076401 to ERP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie L. Bielas.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryan, C.W., Peirent, E.R., Regan, S.L. et al. H2A monoubiquitination: insights from human genetics and animal models. Hum. Genet. 143, 511–527 (2024). https://doi.org/10.1007/s00439-023-02557-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-023-02557-x

Navigation