Skip to main content

Advertisement

Log in

Prenatal diagnosis in the fetal hyperechogenic kidneys: assessment using chromosomal microarray analysis and exome sequencing

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Fetal hyperechogenic kidneys (HEK) is etiologically a heterogeneous disorder. The aim of this study was to identify the genetic causes of HEK using prenatal chromosomal microarray analysis (CMA) and exome sequencing (ES). From June 2014 to September 2022, we identified 92 HEK fetuses detected by ultrasound. We reviewed and documented other ultrasound anomalies, microscopic and submicroscopic chromosomal abnormalities, and single gene disorders. We also analyzed the diagnostic yield of CMA and ES and the clinical impact the diagnosis had on pregnancy management. In our cohort, CMA detected 27 pathogenic copy number variations (CNVs) in 25 (25/92, 27.2%) fetuses, with the most common CNV being 17q12 microdeletion syndrome. Among the 26 fetuses who underwent further ES testing, we identified 7 pathogenic/likely pathogenic variants and 8 variants of uncertain significance in 9 genes in 12 fetuses. Four novel variants were first reported herein, expanding the mutational spectra for HEK-related genes. Following counseling, 52 families chose to continue the pregnancy, and in 23 of them, postnatal ultrasound showed no detectable renal abnormalities. Of these 23 cases, 15 had isolated HEK on prenatal ultrasound. Taken together, our study showed a high rate of detectable genetic etiologies in cases with fetal HEK at the levels of chromosomal (aneuploidy), sub-chromosomal (microdeletions/microduplications), and single gene (point mutations). Therefore, we speculate that combined CMA and ES testing for fetal HEK is feasible and has good clinical utility. When no genetic abnormalities are identified, the findings can be transient, especially in the isolated HEK group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are not publicly available as the information contained could compromise the privacy of research participants. Further inquiries can be directed to the corresponding author.

References

  • Adeva M, El-Youssef M, Rossetti S, Kamath PS, Kubly V, Consugar MB, Milliner DM, King BF, Torres VE, Harris PC (2006) Clinical and molecular characterization defines a broadened spectrum of autosomal recessive polycystic kidney disease (ARPKD). Med (baltimore) 85:1–21

    Article  Google Scholar 

  • Avni FE, Garel C, Cassart M, D’Haene N, Hall M, Riccabona M (2012) Imaging and classification of congenital cystic renal diseases. AJR Am J Roentgenol 198:1004–1013

    Article  PubMed  Google Scholar 

  • Barakat AJ, Raygada M, Rennert OM (2018) Barakat syndrome revisited. Am J Med Genet A 176:1341–1348

    Article  PubMed  Google Scholar 

  • Bergmann C, Senderek J, Sedlacek B, Pegiazoglou I, Puglia P, Eggermann T, Rudnik-Schöneborn S, Furu L, Onuchic LF, De Baca M, Germino GG, Guay-Woodford L, Somlo S, Moser M, Büttner R, Zerres K (2003) Spectrum of mutations in the gene for autosomal recessive polycystic kidney disease (ARPKD/PKHD1). J Am Soc Nephrol 14:76–89

    Article  CAS  PubMed  Google Scholar 

  • Biesecker LG, Green RC (2014) Diagnostic clinical genome and exome sequencing. N Engl J Med 370:2418–2425

    Article  PubMed  Google Scholar 

  • Cheng K, Zhou H, Fu F, Lei T, Li F, Huang R, Wang Y, Yang X, Li R, Li D, Liao C (2022) Should prenatal chromosomal microarray analysis be offered for isolated ventricular septal defect? A single-center retrospective study from China. Front Cardiovasc Med 9:988438

    Article  PubMed  PubMed Central  Google Scholar 

  • Chitty LS, Altman DG (2003) Charts of fetal size: kidney and renal pelvis measurements. Prenat Diagn 23:891–897

    Article  PubMed  Google Scholar 

  • Choong KK, Gruenewald SM, Hodson EM (1993) Echogenic fetal kidneys in cytomegalovirus infection. J Clin Ultrasound 21:128–132

    Article  CAS  PubMed  Google Scholar 

  • Coffinier C, Barra J, Babinet C, Yaniv M (1999) Expression of the vHNF1/HNF1beta homeoprotein gene during mouse organogenesis. Mech Dev 89:211–213

    Article  CAS  PubMed  Google Scholar 

  • Dai XQ, Perez PL, Soria G, Scarinci N, Smoler M, Morsucci DC, Suzuki K, Cantero MDR, Cantiello HF (2017) External Ca(2+) regulates polycystin-2 (TRPP2) cation currents in LLC-PK1 renal epithelial cells. Exp Cell Res 350:50–61

    Article  CAS  PubMed  Google Scholar 

  • Deng L, Liu Y, Yuan M, Meng M, Yang Y, Sun L (2022) Prenatal diagnosis and outcome of fetal hyperechogenic kidneys in the era of antenatal next-generation sequencing. Clin Chim Acta 528:16–28

    Article  CAS  PubMed  Google Scholar 

  • Devriendt A, Cassart M, Massez A, Donner C, Avni FE (2013) Fetal kidneys: additional sonographic criteria of normal development. Prenat Diagn 33:1248–1252

    Article  PubMed  Google Scholar 

  • Digby EL, Liauw J, Dionne J, Langlois S, Nikkel SM (2021) Etiologies and outcomes of prenatally diagnosed hyperechogenic kidneys. Prenat Diagn 41:465–477

    Article  CAS  PubMed  Google Scholar 

  • Estroff JA, Mandell J, Benacerraf BR (1991) Increased renal parenchymal echogenicity in the fetus: importance and clinical outcome. Radiology 181:135–139

    Article  CAS  PubMed  Google Scholar 

  • Fishman JE, Joseph RC (1994) Renal vein thrombosis in utero: duplex sonography in diagnosis and follow-up. Pediatr Radiol 24:135–136

    Article  CAS  PubMed  Google Scholar 

  • Fu F, Li R, Yu Q, Wang D, Deng Q, Li L, Lei T, Chen G, Nie Z, Yang X, Han J, Pan M, Zhen L, Zhang Y, Jing X, Li F, Li F, Zhang L, Yi C, Li Y, Lu Y, Zhou H, Cheng K, Li J, Xiang L, Zhang J, Tang S, Fang P, Li D, Liao C (2022) Application of exome sequencing for prenatal diagnosis of fetal structural anomalies: clinical experience and lessons learned from a cohort of 1618 fetuses. Genome Med 14:123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Y, Ma Z, Patel V, Fischer E, Hiesberger T, Pontoglio M, Igarashi P (2009) HNF-1beta regulates transcription of the PKD modifier gene Kif12. J Am Soc Nephrol 20:41–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gresh L, Fischer E, Reimann A, Tanguy M, Garbay S, Shao X, Hiesberger T, Fiette L, Igarashi P, Yaniv M, Pontoglio M (2004) A transcriptional network in polycystic kidney disease. Embo j 23:1657–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris PC, Torres VE (2009) Polycystic kidney disease. Annu Rev Med 60:321–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidet L, Decramer S, Pawtowski A, Morinière V, Bandin F, Knebelmann B, Lebre AS, Faguer S, Guigonis V, Antignac C, Salomon R (2010) Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases. Clin J Am Soc Nephrol 5:1079–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu T, Zhang Z, Wang J, Li Q, Zhu H, Lai Y, Wang H, Liu S (2019) Prenatal diagnosis of chromosomal aberrations by chromosomal microarray analysis in fetuses with ultrasound anomalies in the urinary system. Prenat Diagn 39:1096–1106

    Article  CAS  PubMed  Google Scholar 

  • Hureaux M, Molin A, Jay N, Saliou AH, Spaggiari E, Salomon R, Benachi A, Vargas-Poussou R, Heidet L (2018) Prenatal hyperechogenic kidneys in three cases of infantile hypercalcemia associated with SLC34A1 mutations. Pediatr Nephrol 33:1723–1729

    Article  PubMed  Google Scholar 

  • Kashtan CE (1999) Alport syndrome. An inherited disorder of renal, ocular, and cochlear basement membranes. Med (baltimore) 78:338–360

    Article  CAS  Google Scholar 

  • Li R, Fu F, Zhang YL, Li DZ, Liao C (2014) Prenatal diagnosis of 17q12 duplication and deletion syndrome in two fetuses with congenital anomalies. Taiwan J Obstet Gynecol 53:579–582

    Article  PubMed  Google Scholar 

  • Li H, He J, Leong I, Huang R, Shi X (2022) Central precocious puberty occurring in Bardet-Biedl syndrome-10 as a method for self-protection of human reproductive function: a case report. Exp Ther Med 24:574

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Vien T, Duan J, Sheu SH, DeCaen PG, Clapham DE (2018) Polycystin-2 is an essential ion channel subunit in the primary cilium of the renal collecting duct epithelium. Elife 7:e33183

    Article  PubMed  PubMed Central  Google Scholar 

  • Lord J, McMullan DJ, Eberhardt RY, Rinck G, Hamilton SJ, Quinlan-Jones E, Prigmore E, Keelagher R, Best SK, Carey GK, Mellis R, Robart S, Berry IR, Chandler KE, Cilliers D, Cresswell L, Edwards SL, Gardiner C, Henderson A, Holden ST, Homfray T, Lester T, Lewis RA, Newbury-Ecob R, Prescott K, Quarrell OW, Ramsden SC, Roberts E, Tapon D, Tooley MJ, Vasudevan PC, Weber AP, Wellesley DG, Westwood P, White H, Parker M, Williams D, Jenkins L, Scott RH, Kilby MD, Chitty LS, Hurles ME, Maher ER (2019) Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): a cohort study. Lancet 393:747–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marion V, Stoetzel C, Schlicht D, Messaddeq N, Koch M, Flori E, Danse JM, Mandel JL, Dollfus H (2009) Transient ciliogenesis involving Bardet-Biedl syndrome proteins is a fundamental characteristic of adipogenic differentiation. Proc Natl Acad Sci USA 106:1820–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mashiach R, Davidovits M, Eisenstein B, Kidron D, Kovo M, Shalev J, Merlob P, Vardimon D, Efrat Z, Meizner I (2005) Fetal hyperechogenic kidney with normal amniotic fluid volume: a diagnostic dilemma. Prenat Diagn 25:553–558

    Article  CAS  PubMed  Google Scholar 

  • Melchionda S, Palladino T, Castellana S, Giordano M, Benetti E, De Bonis P, Zelante L, Bisceglia L (2016) Expanding the mutation spectrum in 130 probands with ARPKD: identification of 62 novel PKHD1 mutations by sanger sequencing and MLPA analysis. J Hum Genet 61:811–821

    Article  CAS  PubMed  Google Scholar 

  • Mitchel MW, Moreno-De-Luca D, Myers SM, Levy RV, Turner S, Ledbetter DH, Martin CL (1993) 17q12 recurrent deletion syndrome. In: Adam MP, Everman DB, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A (eds), GeneReviews(®)(University of Washington, Seattle Copyright © 1993–2023, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.: Seattle (WA))

  • Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJ, Somlo S (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272:1339–1342

    Article  CAS  PubMed  Google Scholar 

  • Moore TR, Cayle JE (1990) The amniotic fluid index in normal human pregnancy. Am J Obstet Gynecol 162:1168–1173

    Article  CAS  PubMed  Google Scholar 

  • Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, Huff CD, Shannon PT, Jabs EW, Nickerson DA, Shendure J, Bamshad MJ (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42:30–35

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HT, Herndon CD, Cooper C, Gatti J, Kirsch A, Kokorowski P, Lee R, Perez-Brayfield M, Metcalfe P, Yerkes E, Cendron M, Campbell JB (2010) The Society for Fetal Urology consensus statement on the evaluation and management of antenatal hydronephrosis. J Pediatr Urol 6:212–231

    Article  PubMed  Google Scholar 

  • Nicolaides KH, Snijders RJ, Gosden CM, Berry C, Campbell S (1992) Ultrasonographically detectable markers of fetal chromosomal abnormalities. Lancet 340:704–707

    Article  CAS  PubMed  Google Scholar 

  • Peixoto AB, da Cunha Caldas TM, Giannecchini CV, Rolo LC, Martins WP, Araujo Júnior E (2016) Reference values for the single deepest vertical pocket to assess the amniotic fluid volume in the second and third trimesters of pregnancy. J Perinat Med 44:723–727

    Article  PubMed  Google Scholar 

  • Petrovski S, Aggarwal V, Giordano JL, Stosic M, Wou K, Bier L, Spiegel E, Brennan K, Stong N, Jobanputra V, Ren Z, Zhu X, Mebane C, Nahum O, Wang Q, Kamalakaran S, Malone C, Anyane-Yeboa K, Miller R, Levy B, Goldstein DB, Wapner RJ (2019) Whole-exome sequencing in the evaluation of fetal structural anomalies: a prospective cohort study. Lancet 393:758–767

    Article  CAS  PubMed  Google Scholar 

  • Porath B, Gainullin VG, Cornec-Le Gall E, Dillinger EK, Heyer CM, Hopp K, Edwards ME, Madsen CD, Mauritz SR, Banks CJ, Baheti S, Reddy B, Herrero JI, Bañales JM, Hogan MC, Tasic V, Watnick TJ, Chapman AB, Vigneau C, Lavainne F, Audrézet MP, Ferec C, Le Meur Y, Torres VE, Harris PC (2016) Mutations in GANAB, encoding the glucosidase IIα subunit, cause autosomal-dominant polycystic kidney and liver disease. Am J Hum Genet 98:1193–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putoux A, Mougou-Zerelli S, Thomas S, Elkhartoufi N, Audollent S, Le Merrer M, Lachmeijer A, Sigaudy S, Buenerd A, Fernandez C, Delezoide AL, Gubler MC, Salomon R, Saad A, Cordier MP, Vekemans M, Bouvier R, Attie-Bitach T (2010) BBS10 mutations are common in ‘Meckel’-type cystic kidneys. J Med Genet 47:848–852

    Article  CAS  PubMed  Google Scholar 

  • Quintero-Rivera F, Woo JS, Bomberg EM, Wallace WD, Peredo J, Dipple KM (2014) Duodenal atresia in 17q12 microdeletion including HNF1B: a new associated malformation in this syndrome. Am J Med Genet A 164a:3076–3082

    Article  PubMed  Google Scholar 

  • Riggs ER, Andersen EF, Cherry AM, Kantarci S, Kearney H, Patel A, Raca G, Ritter DI, South ST, Thorland EC, Pineda-Alvarez D, Aradhya S, Martin CL (2020) Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med 22:245–257

    Article  PubMed  Google Scholar 

  • Rossetti S, Burton S, Strmecki L, Pond GR, San Millán JL, Zerres K, Barratt TM, Ozen S, Torres VE, Bergstralh EJ, Winearls CG, Harris PC (2002) The position of the polycystic kidney disease 1 (PKD1) gene mutation correlates with the severity of renal disease. J Am Soc Nephrol 13:1230–1237

    Article  CAS  PubMed  Google Scholar 

  • Rossetti S, Chauveau D, Kubly V, Slezak JM, Saggar-Malik AK, Pei Y, Ong AC, Stewart F, Watson ML, Bergstralh EJ, Winearls CG, Torres VE, Harris PC (2003) Association of mutation position in polycystic kidney disease 1 (PKD1) gene and development of a vascular phenotype. Lancet 361:2196–2201

    Article  CAS  PubMed  Google Scholar 

  • Shuster S, Keunen J, Shannon P, Watkins N, Chong K, Chitayat D (2019) Prenatal detection of isolated bilateral hyperechogenic kidneys: etiologies and outcomes. Prenat Diagn 39:693–700

    Article  CAS  PubMed  Google Scholar 

  • Stoetzel C, Laurier V, Davis EE, Muller J, Rix S, Badano JL, Leitch CC, Salem N, Chouery E, Corbani S, Jalk N, Vicaire S, Sarda P, Hamel C, Lacombe D, Holder M, Odent S, Holder S, Brooks AS, Elcioglu NH, Silva ED, Rossillion B, Sigaudy S, de Ravel TJ, Lewis RA, Leheup B, Verloes A, Amati-Bonneau P, Mégarbané A, Poch O, Bonneau D, Beales PL, Mandel JL, Katsanis N, Dollfus H (2006) BBS10 encodes a vertebrate-specific chaperonin-like protein and is a major BBS locus. Nat Genet 38:521–524

    Article  CAS  PubMed  Google Scholar 

  • Tao T, Liu J, Wang B, Pang J, Li X, Huang L (2022) Novel mutations in BBS genes and clinical characterization of Chinese families with Bardet-Biedl syndrome. Eur J Ophthalmol 11206721221136324

  • Tsatsaris V, Gagnadoux MF, Aubry MC, Gubler MC, Dumez Y, Dommergues M (2002) Prenatal diagnosis of bilateral isolated fetal hyperechogenic kidneys. Is it possible to predict long term outcome? BJOG 109:1388–1393

    Article  CAS  PubMed  Google Scholar 

  • Wapner RJ, Martin CL, Levy B, Ballif BC, Eng CM, Zachary JM, Savage M, Platt LD, Saltzman D, Grobman WA, Klugman S, Scholl T, Simpson JL, McCall K, Aggarwal VS, Bunke B, Nahum O, Patel A, Lamb AN, Thom EA, Beaudet AL, Ledbetter DH, Shaffer LG, Jackson L (2012) Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med 367:2175–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, Braxton A, Beuten J, Xia F, Niu Z, Hardison M, Person R, Bekheirnia MR, Leduc MS, Kirby A, Pham P, Scull J, Wang M, Ding Y, Plon SE, Lupski JR, Beaudet AL, Gibbs RA, Eng CM (2013) Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med 369:1502–1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yulia A, Napolitano R, Aiman A, Desai D, Johal N, Whitten M, Ushakov F, Pandya PP, Winyard PJD (2021) Perinatal and infant outcome of fetuses with prenatally diagnosed hyperechogenic kidneys. Ultrasound Obstet Gynecol 57:953–958

    Article  CAS  PubMed  Google Scholar 

  • Zerres K, Völpel MC, Weiss H (1984) Cystic kidneys. Genetics, pathologic anatomy, clinical picture, and prenatal diagnosis. Hum Genet 68:104–135

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu Y, Yan L, Zhuang D, Li H (2021) Prenatal diagnosis and genetic analysis of two fetuses with paternally derived 17q12 microdeletions. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 38:224–227

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the participants in this study.

Funding

This research was funded by the sub-project of the National Key R&D Program (2021YFC2701002), the National Natural Science Foundation of China (82101796, 81801461, 81873836, 81771594, 82201884), the Natural Science Foundation of Guangdong Province (2019A1515012034), the Project of Guangzhou Science and Technology Bureau (202201020643, 202201010879, 20221A011029), and the Research Foundation of Guangzhou Women and Children’s Medical Center for Clinical Doctors (2020BS030).

Author information

Authors and Affiliations

Authors

Contributions

Manuscript writing: RH, FF, and HZ; study design and manuscript editing: SY, DL, and CL; document retrieval: TL, YW, CM, and KC; exome sequence variants classification: RL, QY, and QD; clinical data statistics: LZ, FG, XY, LL, and JH. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Can Liao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study was approved by the Ethics Committee of Guangzhou Women and Children’s Medical Center.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 75 KB)

Supplementary file2 (DOCX 21 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, R., Fu, F., Zhou, H. et al. Prenatal diagnosis in the fetal hyperechogenic kidneys: assessment using chromosomal microarray analysis and exome sequencing. Hum Genet 142, 835–847 (2023). https://doi.org/10.1007/s00439-023-02545-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-023-02545-1

Navigation