Skip to main content

Genetic etiology of non-syndromic hearing loss in Latin America

Abstract

Latin America comprises all countries from South and Central America, in addition to Mexico. It is characterized by a complex mosaic of regions with heterogeneous genetic profiles regarding the geographical origin of the ancestors and proportions of admixture between the Native American, European and African components. In the first years following the findings of the role of the GJB2/GJB6 genes in the etiology of hearing loss, most scientific investigations about the genetics of hearing loss in Latin America focused on assessing the frequencies of pathogenic variants in these genes. More recently, modern techniques allowed researchers in Latin America to make exciting contributions to the finding of new candidate genes, novel mechanisms of inheritance in previously known genes, and characterize a wide diversity of variants, many of them unique to Latin America. This review aimed to provide a general landscape of the genetic studies about non-syndromic hearing loss in Latin America and their main scientific contributions. It allows the conclusion that, although there are similar contributions of some genes, such as GJB2/GJB6, when compared to European and North American countries, Latin American populations revealed some peculiarities that indicate the need for tailored strategies of screening and diagnosis to specific geographic regions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Availability of data and material

Additional data and material are available upon request.

References

  1. Abreu-Silva RS, Lezirovitz K, Braga MC et al (2006a) Prevalence of the A1555G (12S rRNA) and tRNASer(UCN) mitochondrial mutations in hearing-impaired Brazilian patients. Braz J Med Biol Res 39:219–226. https://doi.org/10.1590/s0100-879x2006000200008

    CAS  Article  PubMed  Google Scholar 

  2. Abreu-Silva RS, Batissoco AC, Lezirovitz K et al (2006b) Correspondence regarding Ballana et al., “Mitochondrial 12S rRNA gene mutations affect RNA secondary structure and lead to variable penetrance in hearing impairment.” Biochem Biophys Res Commun 343:675–676. https://doi.org/10.1016/j.bbrc.2006.03.049

    CAS  Article  PubMed  Google Scholar 

  3. Alves RM, da Silva Costa SM, do Amôr Divino Miranda PM, et al (2016) Analysis of mitochondrial alterations in Brazilian patients with sensorineural hearing loss using MALDI-TOF mass spectrometry. BMC Med Genet 17:41. https://doi.org/10.1186/s12881-016-0303-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Anastasio ART, Yamamoto AY, Massuda ET et al (2021) Comprehensive evaluation of risk factors for neonatal hearing loss in a large Brazilian cohort. J Perinatol 41:315–323. https://doi.org/10.1038/s41372-020-00807-8

    Article  PubMed  Google Scholar 

  5. Angeli S, Utrera R, Dib S, Chiossone E, Naranjo C, Henríquez O, Porta M (2000) GJB2 gene mutations in childhood deafness. Acta Otolaryngol 120:133–136. https://doi.org/10.1080/000164800750000766

    CAS  Article  PubMed  Google Scholar 

  6. Arenas-Sordo ML, Menendez I, Hernández-Zamora E et al (2012) Unique spectrum of GJB2 mutations in Mexico. Int J Pediatr Otorhinolaryngol 76:1678–1680. https://doi.org/10.1016/j.ijporl.2012.08.005

    Article  Google Scholar 

  7. Bademci G, Foster J 2nd, Mahdieh N et al (2016) Comprehensive analysis via exome sequencing uncovers genetic etiology in autosomal recessive nonsyndromic deafness in a large multiethnic cohort. Genet Med 18:364–371. https://doi.org/10.1038/gim.2015.89

    CAS  Article  PubMed  Google Scholar 

  8. Barboza ACS, Resende LM, Ferreira DBC et al (2013) Correlation between hearing loss and risk indicators in a neonatal hearing screening reference service. ACR 18:285–92. https://www.scielo.br/j/acr/a/XzjQ9L6tPKJLcSjkmWk5rFL/abstract/?lang=en&format=html. Accessed 3 June 2021

  9. Batissoco AC, Abreu-Silva RS, Braga MC et al (2009a) Prevalence of GJB2 (connexin-26) and GJB6 (connexin-30) mutations in a cohort of 300 Brazilian hearing-impaired individuals: implications for diagnosis and genetic counseling. Ear Hear 30:1–7. https://doi.org/10.1097/AUD.0b013e31819144ad

    Article  PubMed  Google Scholar 

  10. Batissoco AC, Auricchio MT, Kimura L et al (2009b) A novel missense mutation p. L76P in the GJB2 gene causing nonsyndromic recessive deafness in a Brazilian family. Braz J Med Biol Res 42:168–171. https://doi.org/10.1590/s0100-879x2009000200004

    CAS  Article  PubMed  Google Scholar 

  11. Batissoco AC, Pedroso-Campos V, Pardono E et al (2021) Molecular-genetics characterization of a large Brazilian cohort presenting hearing loss. Human Genet (submitted)

  12. Belintani Piatto V, Bertollo EMG, Sartorato EL, Maniglia VJ (2004) Prevalence of the GJB2 mutations and the del(GJB6-D13S1830) mutation in Brazilian patients with deafness. Hear Res 196:87–93. https://doi.org/10.1016/j.heares.2004.05.007

    CAS  Article  PubMed  Google Scholar 

  13. Bernardes R, Bortoncello S, Christiani TV et al (2006) Molecular investigation in children candidates and submitted to cochlear implantation. Braz J Otorhinolaryngol 72:333–336. https://doi.org/10.1016/s1808-8694(15)30965-4

    Article  PubMed  Google Scholar 

  14. Bevilacqua MC, Alvarenga KF, Costa OA, Moret ALM (2010) The Universal newborn hearing screening in Brazil: from identification to intervention. Int J Pediatric Otorhinolaryngol 74:510–515

    Article  Google Scholar 

  15. Booth KT, Kahrizi K, Najmabadi H, Azaiez H, Smith RJ (2018) Old gene, new phenotype: splice-altering variants in CEACAM16 cause recessive non-syndromic hearing impairment. J Med Genet 55:555–560. https://doi.org/10.1136/jmedgenet-2018-105349

    CAS  Article  PubMed  Google Scholar 

  16. Botelho MS, Silva VB, Arruda Lda S et al (2010) Newborn hearing screening in the Limiar Clinic in Porto Velho-Rondônia. Braz J Otorhinolaryngol 76:605–610. https://doi.org/10.1590/S1808-86942010000500012

    Article  PubMed  Google Scholar 

  17. Bouzaher MH, Worden CP, Jeyakumar A (2020) Systematic review of pathogenic GJB2 variants in the Latino population. Otol Neurotol 41:e182–e191. https://doi.org/10.1097/MAO.0000000000002505

    Article  PubMed  Google Scholar 

  18. Bueno AS, Nunes K, Dias AMM et al (2021) Frequency and origin of the c.2090T>G p.(Leu697Trp) MYO3A variant associated with autosomal dominant hearing loss. Eur J Hum Genet. https://doi.org/10.1038/s41431-021-00891-0 (Online ahead of print)

    Article  PubMed  Google Scholar 

  19. Buonfiglio P, Bruque CD, Luce L et al (2020) GJB2 and GJB6 genetic variant curation in an argentinean non-syndromic hearing-impaired cohort. Genes (basel) 11:1233. https://doi.org/10.3390/genes11101233

    CAS  Article  Google Scholar 

  20. Carranza C, Menendez I, Herrera M et al (2016) A Mayan founder mutation is a common cause of deafness in Guatemala. Clin Genet 89:461–465. https://doi.org/10.1111/cge.12676

    CAS  Article  PubMed  Google Scholar 

  21. Carvalho SDCES, Grangeiro CHP, Picanço-Albuquerque CG et al (2018) Contribution of SLC26A4 to the molecular diagnosis of nonsyndromic prelingual sensorineural hearing loss in a Brazilian cohort. BMC Res Notes 11:546. https://doi.org/10.1186/s13104-018-3647-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Carvalho-Silva DR, Santos FR, Rocha J, Pena SD (2001) The phylogeography of Brazilian Y-chromosome lineages. Am J Hum Genet 68:281–286. https://doi.org/10.1086/316931

    CAS  Article  PubMed  Google Scholar 

  23. Castro LS, Marinho AN, Rodrigues EM et al (2013) A study of GJB2 and delGJB6-D13S1830 mutations in Brazilian non-syndromic deaf children from the Amazon region. Braz J Otorhinolaryngol 79:95–99. https://doi.org/10.5935/1808-8694

    Article  PubMed  Google Scholar 

  24. Cengiz FB, Yilmazer R, Olgun L et al (2017) Novel pathogenic variants underlie SLC26A4-related hearing loss in a multiethnic cohort. Int J Pediatr Otorhinolaryngol 101:167–171. https://doi.org/10.1016/j.ijporl.2017.08.006

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chapchap MJ, Segre CM (2000) Universal newborn hearing screening and transient evoked otoacoustic emission: new concepts in Brazil. Scan Audiol Suppl 53:33–36

    Google Scholar 

  26. Christiani TV, Alexandrino F, de Oliveira CA et al (2007) Molecular study in Brazilian cochlear implant recipients. Am J Med Genet A 143A:1580–1582. https://doi.org/10.1002/ajmg.a.31778

    CAS  Article  PubMed  Google Scholar 

  27. Cifuentes L, Arancibia M, Torrente M et al (2013) Prevalence of the 35delG mutation in the GJB2 gene in two samples of non-syndromic deaf subjects from Chile. Biol Res 46:239–242. https://doi.org/10.4067/S0716-97602013000300003

    Article  PubMed  Google Scholar 

  28. Cordeiro-Silva MF, Barbosa A, Santiago M et al (2011) Mutation analysis of GJB2 and GJB6 genes in Southeastern Brazilians with hereditary nonsyndromic deafness. Mol Biol Rep 38:1309–1313. https://doi.org/10.1007/s11033-010-0231-y

    CAS  Article  Google Scholar 

  29. Cordeiro-Silva Mde F, Barbosa A, Santiago M et al (2010) Prevalence of 35del G/GJB2 and del (GJB6-D13S1830) mutations in patients with non-syndromic deafness from a population of Espírito Santo-Brazil. Braz J Otorhinolaryngol 76:428–32. https://doi.org/10.1590/S1808-86942010000400004

  30. da Motta LH, Félix TM, de Souza LT et al (2012) Prevalence of the 35delG mutation in deaf South Brazilian infants submitted to cochlear implantation. Int J Pediatr Otorhinolaryngol 76:287–290. https://doi.org/10.1016/j.ijporl.2011.11.023

    Article  PubMed  Google Scholar 

  31. Da Silva-Costa SM, Martins FT, Pereira T et al (2011) Searching for digenic inheritance in deaf Brazilian individuals using the multiplex ligation-dependent probe amplification technique. Genet Test Mol Biomark 15:849–853. https://doi.org/10.1089/gtmb.2011.0034

    CAS  Article  Google Scholar 

  32. Dalamón V, Béhèran A, Diamante F et al (2005) Prevalence of GJB2 mutations and the del(GJB6-D13S1830) in Argentinean non-syndromic deaf patients. Hear Res 207:43–49. https://doi.org/10.1016/j.heares.2005.04.012

    CAS  Article  PubMed  Google Scholar 

  33. Dalamón V, Lotersztein V, Béhèran A et al (2010) GJB2 and GJB6 genes: molecular study and identification of novel GJB2 mutations in the hearing-impaired Argentinean population. Audiol Neurootol 15:194–202. https://doi.org/10.1159/000254487

    CAS  Article  PubMed  Google Scholar 

  34. Dalamón V, Wernert FM, Lotersztein V et al (2013) Identification of four novel connexin 26 mutations in non-syndromic deaf patients: genotype-phenotype analysis in moderate cases. Mol Biol Rep 40:6945–6955. https://doi.org/10.1007/s11033-013-2814-x

    CAS  Article  PubMed  Google Scholar 

  35. Dantas VG, Lezirovitz K, Yamamoto GL et al (2014) c.G2114A MYH9 mutation (DFNA17) causes non-syndromic autosomal dominant hearing loss in a Brazilian family. Genet Mol Biol 37:616–621. https://doi.org/10.1590/S1415-47572014005000025

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Dantas VGL, Raval MH, Ballesteros A et al (2018) Characterization of a novel MYO3A missense mutation associated with a dominant form of late-onset hearing loss. Sci Rep 8:8706. https://doi.org/10.1038/s41598-018-26818-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. De Carvalho GM, Ramos PZ, Castilho AM et al (2016a) Molecular study of patients with auditory neuropathy. Mol Med Rep 14:481–490. https://doi.org/10.3892/mmr.2016.5226

    CAS  Article  PubMed  Google Scholar 

  38. De Carvalho GM, Ramos Z, P, M Castilho A, et al (2016b) Relationship between patients with clinical auditory neuropathy spectrum disorder and mutations in Gjb2 Gene. Open Neurol J 10:127–135. https://doi.org/10.2174/1874205X01610010127

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. de Moraes VC, dos Santos NZ, Ramos PZ et al (2013) Molecular analysis of SLC26A4 gene in patients with nonsyndromic hearing loss and EVA: identification of two novel mutations in Brazilian patients. Int J Pediatr Otorhinolaryngol 77:410–413. https://doi.org/10.1016/j.ijporl.2012.11.042

    Article  PubMed  Google Scholar 

  40. Del Castillo FJ, Rodríguez-Ballesteros M, Alvarez A et al (2005) A novel deletion involving the connexin-30 gene, del(GJB6-d13s1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment. J Med Genet 42:588–594. https://doi.org/10.1136/jmg.2004.028324

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Denoyelle F, Weil D, Maw MA et al (1997) Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26 gene. Hum Mol Genet 6:2173–2177. https://doi.org/10.1093/hmg/6.12.2173

    CAS  Article  PubMed  Google Scholar 

  42. Di Leva F, D’Adamo P, Cubellis MV et al (2006) Identification of a novel mutation in the myosin VIIA motor domain in a family with autosomal dominant hearing loss (DFNA11). Audiol Neurootol 11:157–164. https://doi.org/10.1159/000091199

    CAS  Article  PubMed  Google Scholar 

  43. Dias AMM, Lezirovitz K, Nicastro FS, Mendes BCA, Mingroni-Netto RC (2019) Further evidence for loss-of-function mutations in the CEACAM16 gene causing nonsyndromic autosomal recessive hearing loss in humans. J Hum Genet 64:257–260. https://doi.org/10.1038/s10038-018-0546-4

    CAS  Article  PubMed  Google Scholar 

  44. Emmett SD, Tucci DL, Bento RF et al (2016) Moving beyond GDP: cost-effectiveness of cochlear implantation and deaf education in Latin America. Otol Neurotol 37:1040–1048. https://doi.org/10.1097/MAO.0000000000001148

    Article  PubMed  Google Scholar 

  45. Estivill X, Govea N, Barceló E et al (1998a) Familial progressive sensorineural deafness is mainly due to the mtDNA A1555G mutation and is enhanced by treatment of aminoglycosides. Am J Hum Genet 62:27–35. https://doi.org/10.1086/301676

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Estivill X, Fortina P, Surrey S et al (1998b) Connexin-26 mutations in sporadic and inherited sensorineural deafness. Lancet 35:394–398. https://doi.org/10.1016/S0140-6736(97)11124-2

    Article  Google Scholar 

  47. Esteves MC, de Lima Isaac M, Francisco AM et al (2014) Analysis of the presence of the GJB6 mutations in patients heterozygous for GJB2 mutation in Brazil. Eur Otorhinolaryngol 271:695–9. https://doi.org/10.1007/s00405-013-2468-2

  48. Faistauer M, Lang Silva A, Félix TM et al (2021) Etiology of early hearing loss in Brazilian children. Braz J Otorhinolaryngol. https://doi.org/10.1016/j.bjorl.2021.02.012

    Article  PubMed  Google Scholar 

  49. Fejerman L, Romieu I, John EM et al (2010) European ancestry is positively associated with breast cancer risk in Mexican women. Cancer Epidemiol Biomark Prev 19:1074–1082. https://doi.org/10.1158/1055-9965.EPI-09-1193

    Article  Google Scholar 

  50. Felix F, Zallis MG, Tomita S, Baptista MM, Ribeiro MG (2014) Evaluation of the presence of the 35delG mutation in patients with severe to profound hearing loss based on ethnicity. Rev Laryngol Otol Rhinol (bord) 135:171–174

    CAS  Google Scholar 

  51. Figueroa-Ildefonso E, Bademci G, Rajabli F et al (2019) Identification of main genetic causes responsible for non-syndromic hearing loss in a Peruvian population. Genes (basel) 10:581. https://doi.org/10.3390/genes10080581

    CAS  Article  Google Scholar 

  52. Freitas ÉL, Oiticica J, Silva AG, Bittar RS, Rosenberg C, Mingroni-Netto RC (2014) Deletion of the entire POU4F3 gene in a familial case of autosomal dominant non-syndromic hearing loss. Eur J Med Genet 57:125–128. https://doi.org/10.1016/j.ejmg.2014.02.006

    Article  PubMed  Google Scholar 

  53. Gasparini P, Rabionet R, Barbujani G et al (2000) High carrier frequency of the 35delG deafness mutation in European populations. Eur J Hum Genet 8:19–23. https://doi.org/10.1038/SJ.ejhg.5200406

    CAS  Article  PubMed  Google Scholar 

  54. Gerner de Garcia B, Gaffney C, Chacon S (2011) Gaffney M (2011) Overview of newborn hearing screening activities in Latin America. Rev Panam Salud Publ 29(3):145–152

    Google Scholar 

  55. Gonzalez-Trevino O, Karamanoglu-Arseven O, Ceballos CJ et al (2001) Clinical and molecular analysis of three Mexican families with Pendred’s syndrome. Eur J Endocrinol 144:585–593. https://doi.org/10.1530/eje.0.1440585

    CAS  Article  PubMed  Google Scholar 

  56. Gouveia MH, Borda V, Leal TP et al (2020) Origins, admixture dynamics, and homogenization of the african gene pool in the Americas. Mol Biol Evol 37:1647–1656. https://doi.org/10.1093/molbev/msaa033

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Gravina LP, Foncuberta ME, Estrada RC, Barreiro C, Chertkoff L (2007) Carrier frequency of the 35delG and A1555G deafness mutations in the Argentinean population. Impact on the newborn hearing screening. Int J Pediatr Otorhinolaryngol 71:639–643. https://doi.org/10.1016/j.ijporl.2006.12.015

    Article  PubMed  Google Scholar 

  58. Gravina LP, Foncuberta ME, Prieto ME, Garrido J, Barreiro C, Chertkoff L (2010) Prevalence of DFNB1 mutations in Argentinean children with non-syndromic deafness. Report of a novel mutation in GJB2. Int J Pediatr Otorhinolaryngol 74:250–254. https://doi.org/10.1016/j.ijporl.2009.11.014

    Article  PubMed  Google Scholar 

  59. Hayashi C, Funayama M, Li Y et al (2011) Prevalence of GJB2 causing recessive profound non-syndromic deafness in Japanese children. Int J Pediatr Otorhinolaryngol 75:211–214. https://doi.org/10.1016/j.ijporl.2010.11.001

    Article  PubMed  Google Scholar 

  60. Hernández-Juárez AA, Lugo-Trampe JJ, Campos-Acevedo LD et al (2014) GJB2 and GJB6 mutations are an infrequent cause of autosomal-recessive nonsyndromic hearing loss in residents of Mexico. Int J Pediatr Otorhinolaryngol 78:2107–2112. https://doi.org/10.1016/j.ijporl.2014.09.016

    Article  PubMed  Google Scholar 

  61. Hilgert N, Smith RJ, Van Camp G (2009) Forty-six genes causing nonsyndromic hearing impairment: which ones should be analyzed in DNA diagnostics? Mutat Res 681:189–196. https://doi.org/10.1016/j.mrrev.2008.08.002

    CAS  Article  PubMed  Google Scholar 

  62. Hünemeier T, Amorim CE, Azevedo S et al (2012) Evolutionary responses to a constructed niche: Ancient Mesoamericans as a model of gene-culture coevolution. PLoS ONE 7:e38862. https://doi.org/10.1371/journal.pone.0038862

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. IBGE. Population census (2010) Instituto Brasileiro de Geografia e Estatística (IBGE). Accessed May 2011.

  64. IBGE | Biblioteca | Detalhes | Brasil (2000) 500 anos de povoamento /IBGE, Centro de Documentação e Disseminação de Informações. biblioteca.ibge.gov.br.

  65. IBGE (2020) Cidaes e Estados https://www.ibge.gov.br/cidades-e-estados

  66. Klein HS (1999) The Atlantic slave trade. Cambridge University Press

    Google Scholar 

  67. Kopp P, Arseven OK, Sabacan L et al (1999) Phenocopies for deafness and goiter development in a large inbred Brazilian kindred with Pendred’s syndrome associated with a novel mutation in the PDS gene. J Clin Endocrinol Metab 84:336–341. https://doi.org/10.1210/jcem.84.1.5398

    CAS  Article  PubMed  Google Scholar 

  68. Lalwani AK, Goldstein JA, Kelley MJ et al (2000) Human nonsyndromic hereditary deafness DFNA17 is due to a mutation in nonmuscle myosin MYH9. Am J Hum Genet 67:1121–1128. https://doi.org/10.1016/S0002-9297(07)62942-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Lattig MC, Gelvez N, Plaza SL et al (2008) Deafness on the island of Providencia—Colombia: different etiology, different genetic counseling. Genet Couns 19:403–412

    CAS  PubMed  Google Scholar 

  70. Leon PE, Raventos H, Lynch E et al (1992) The gene for an inherited form of deafness maps to chromosome 5q31. Proc Natl Acad Sci U S A 89:5181–5184. https://doi.org/10.1073/pnas.89.11.5181

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Lezirovitz K, Nicastro FS, Pardono E et al (2006) Is autosomal recessive deafness associated with oculocutaneous albinism a “coincidence syndrome”? J Hum Genet 51:716–720. https://doi.org/10.1007/s10038-006-0003-7

    CAS  Article  PubMed  Google Scholar 

  72. Lezirovitz K, Pardon E, de Mello Auricchio MT et al (2008) Unexpected genetic heterogeneity in a large consanguineous Brazilian pedigree presenting deafness. Eur J Hum Genet 16:89–96. https://doi.org/10.1038/SJ.ejhg.5201917

    CAS  Article  PubMed  Google Scholar 

  73. Lezirovitz K, Braga MC, Thiele-Aguiar RS et al (2009) A novel autosomal dominant deafness locus (DFNA58) maps to 2p12-p21. Clin Genet 75:490–493. https://doi.org/10.1111/j.1399-0004.2008.01130.x

    CAS  Article  PubMed  Google Scholar 

  74. Lezirovitz K, Batissoco AC, Lima FT et al (2012) Aberrant transcript produced by a splice donor site deletion in the TECTA gene is associated with autosomal dominant deafness in a Brazilian family. Gene 511:280–284. https://doi.org/10.1016/j.gene.2012.09.023

    CAS  Article  PubMed  Google Scholar 

  75. Lezirovitz K, Vieira-Silva GA, Batissoco AC et al (2020) A rare genomic duplication in 2p14 underlies autosomal dominant hearing loss DFNA58. Hum Mol Genet 29:1520–1536. https://doi.org/10.1093/hmg/ddaa075

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Li Q, Ji Y, Han B et al (2014) Comparative study of mutation spectrums of MT-RNR1 m.1555A>G, GJB2, and SLC26A4 between familial and sporadic patients with nonsyndromic sensorineural hearing loss in Chinese Han. Chin Med J (Engl) 127: 3233–3237. https://journals.lww.com/cmj/Fulltext/2014/09200/Comparative_study_of_mutation_spectrums_ofMT_RNR1.8.aspx. Accessed 1 June 2021

  77. Llamas B, Fehren-Schmitz L, Valverde G et al (2016) Ancient mitochondrial DNA provides high-resolution time scale of the peopling of the Americas. Sci Adv 2:e1501385. https://doi.org/10.1126/sciadv.1501385

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. Loeza-Becerra F, Rivera-Vega Mdel R, Martínez-Saucedo M et al (2014) Particular distribution of the GJB2/GJB6 gene mutations in Mexican population with hearing impairment. Int J Pediatr Otorhinolaryngol 78:1057–1060. https://doi.org/10.1016/j.ijporl.2014.04.002

    Article  PubMed  Google Scholar 

  79. Lofrano-Porto A, Barra GB, Nascimento PP et al (2008) Pendred syndrome in a large consanguineous Brazilian family caused by a homozygous mutation in the SLC26A4 gene. Arq Bras Endocrinol Metabol 52:1296–1303. https://doi.org/10.1590/s0004-27302008000800015

    Article  PubMed  Google Scholar 

  80. Lynch ED, Lee MK, Morrow JE et al (1997) Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous. Science 278:1315–1318. https://science.sciencemag.org/content/278/5341/1315.long. Accessed 15 Jan 2021

  81. Madriz JJ (2000) Hearing impairment in Latin America: an inventory of limited options and resources. Audiology 39:212–220. https://doi.org/10.3109/00206090009073081

    CAS  Article  PubMed  Google Scholar 

  82. Manzoli GN, Abe-Sandes K, BittlesAH, et al (2013) Non-syndromic hearing impairment in a multiethnic population of Northeastern Brazil. Int J Pediatr Otorhinolaryngol 77:1077–1082. https://doi.org/10.1016/j.ijporl.2013.04.001

    Article  PubMed  Google Scholar 

  83. Manzoli GN, Bademci G, Acosta AX et al (2016) Targeted resequencing of deafness genes reveals a founder MYO15A variant in Northeastern Brazil. Ann Hum Genet 80:327–331. https://doi.org/10.1111/ahg.12177

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. Manzoni CRCT, Ferreira CA, Tristão SMV, Tedesco MRM (2016) Triagem auditiva neonatal na cidade de São Paulo. Anais do 31oEncontro Internacional de Audiologia. 2016 Maio 26–28; São Paulo: Centro de Convenções Rebouças; 2016. p. 3604.

  85. Marinho ACA, Pereira ECS, Torres KKC et al (2020) Evaluation of newborn hearing screening program. Rev Saude Publica 54:44. https://doi.org/10.11606/s1518-8787.2020054001643

    Article  PubMed  PubMed Central  Google Scholar 

  86. Martínez H, Rodriguez-Larralde A, Izaguirre MH, Castro de Guerra D (2007) Admixture estimates for Caracas, Venezuela, based on autosomal, Y-chromosome, and mtDNA markers. Hum Biol 79:201–213. https://doi.org/10.1353/hub.2007.0032

    Article  PubMed  Google Scholar 

  87. Martínez-Cruz CF, Ramírez-Vargas MN, García-Alonso Themann P (2020) Results of the universal neonatal hearing screening in a tertiary care hospital in Mexico city. Int J Pediatr Otorhinolaryngol 139:110412. https://doi.org/10.1016/j.ijporl.2020.110412

    Article  PubMed  Google Scholar 

  88. Martínez-Saucedo M, Rivera-Vega Mdel R, Gonzalez-Huerta Luz M et al (2015) Two novel compound heterozygous families with a trimutation in the GJB2 gene causing sensorineural hearing loss. Int J Pediatr Otorhinolaryngol 79:2295–2299. https://doi.org/10.1016/j.ijporl.2015.10.030

    Article  PubMed  Google Scholar 

  89. Martins FT, Ramos PZ, Svidnicki MC et al (2013) Optimization of simultaneous screening of the main mutations involved in non-syndromic deafness using the TaqMan OpenArray Genotyping platform. BMC Med Genet 14:112. https://doi.org/10.1186/1471-2350-14-112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. Matos TD, Simões-Teixeira H, Caria H et al (2015) Spectrum and frequency of GJB2 mutations in a cohort of 264 Portuguese nonsyndromic sensorineural hearing loss patients. Int J Audiol 52:466–471. https://doi.org/10.3109/14992027.2013.783719

    Article  Google Scholar 

  91. Mattos WM, Cardoso LF, Bissani C et al (2009) Newborn hearing screening program implantation analysis at a university hospital. Braz J Otorrinolaringol 75:237–244. https://doi.org/10.1590/S0034-72992009000200013

    Article  Google Scholar 

  92. Melo US, Santos S, Cavalcanti HG et al (2014) Strategies for genetic study of hearing loss in the Brazilian northeastern region. Int J Mol Epidemiol Genet 5:11–21 (eCollection 2014)

    PubMed  PubMed Central  Google Scholar 

  93. Migliosi V, Modamio-Høybjør S, Moreno-Pelayo MA et al (2002) Q829X, a novel mutation in the gene encoding OTOFerlin (OTOF), is frequently found in Spanish patients with prelingual non-syndromic hearing loss. J Med Genet 39:502–506. https://doi.org/10.1136/jmg.39.7.502

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. Moreira D, Silva DD, Lopez P, Mantovani JC (2015) Screening of connexin 26 in nonsyndromic hearing loss. Int Arch Otorhinolaryngol 19:30–33. https://doi.org/10.1055/s-0034-1373783

    Article  PubMed  Google Scholar 

  95. Nivoloni KA, da Silva-Costa SM et al (2010) Newborn hearing screening and genetic testing in 8974 Brazilian neonates. Int J Pediatr Otorhinolaryngol 74:926–929. https://doi.org/10.1016/j.ijporl.2010.05.015

    Article  Google Scholar 

  96. Nonose RW, Lezirovitz K, de Mello Auricchio MTB et al (2018) Mutation analysis of SLC26A4 (Pendrin) gene in a Brazilian sample of hearing-impaired subjects. BMC Med Genet 19:73. https://doi.org/10.1186/s12881-018-0585-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. Norris ET, Wang L, Conley AB et al (2018) Genetic ancestry, admixture and health determinants in Latin America. BMC Genom 19:861. https://doi.org/10.1186/s12864-018-5195-7

    CAS  Article  Google Scholar 

  98. Oliveira CA, Maciel-Guerra AT, Sartorato EL (2002) Deafness resulting from mutations in the GJB2 (connexin 26) gene in Brazilian patients. Clin Genet 61:354–358. https://doi.org/10.1034/j.1399-0004.2002.610506.x

    CAS  Article  PubMed  Google Scholar 

  99. Oliveira CA, Alexandrino F, Abe-Sandes K et al (2004) Frequency of the 35delG mutation in the GJB2 gene in samples of European, Asian, and African Brazilians. Hum Biol 76:313–316. https://doi.org/10.1353/hub.2004.0035

    CAS  Article  PubMed  Google Scholar 

  100. Oliveira CA, Pimpinati CJ, Alexandrino F et al (2007a) Allelic frequencies of the 35delG mutation of the GJB2 gene in different Brazilian regions. Genet Test 11(1):1–3. https://doi.org/10.1089/gte.2006.9994

    CAS  Article  PubMed  Google Scholar 

  101. Oliveira CA, Alexandrino F, Christiani TV, Steiner CE, Cunha JL, Guerra AT, Sartorato EL (2007b) Molecular genetics study of deafness in Brazil: 8-year experience. Am J Med Genet A 143A:1574–1579. https://doi.org/10.1002/ajmg.a.31838

    CAS  Article  PubMed  Google Scholar 

  102. Ongaro L, Scliar MO, Flores R et al (2019) The genomic impact of European colonization of the Americas. Curr Biol 29:3974-3986.e4. https://doi.org/10.1016/j.cub.2019.09.076

    CAS  Article  PubMed  Google Scholar 

  103. Otto PA, Lemes RB, Farias AA et al (2020) The structure of first-cousin marriages in Brazil. Sci Rep 10:15573. https://doi.org/10.1038/s41598-020-72366-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. Pang X, Chai Y, Sun L et al (2014) Characterization of spectrum, de novo rate and genotype-phenotype correlation of dominant GJB2 mutations in Chinese hans. PLoS ONE 19:e100483. https://doi.org/10.1371/journal.pone.0100483

    Article  Google Scholar 

  105. Paz-y-Miño C, Beaty D, López-Cortés A, Proaño I (2014) Frequency of GJB2 and del(GJB6-D13S1830) mutations among an Ecuadorian mestizo population. Int J Pediatr Otorhinolaryngol 78:1648–1654. https://doi.org/10.1016/j.ijporl.2014.07.014

    Article  PubMed  Google Scholar 

  106. Pena SD, Di Pietro G, Fuchshuber-Moraes M et al (2011) The genomic ancestry of individuals from different geographical regions of Brazil is more uniform than expected. PLoS ONE 6(2):e17063. https://doi.org/10.1371/journal.pone.0017063

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. Pereira T, Costa KC, Pomilio MCA et al (2014) Investigação etiológica da deficiência auditiva em neonatos identificados em um programa de triagem auditiva neonatal universal. Rev CEFAC 16:422–429

    Article  Google Scholar 

  108. Posth C, Nakatsuka N, It L, al, (2018) Reconstructing the Deep Population History of Central and South America. Cell 175:1185-1197.e22. https://doi.org/10.1016/j.cell.2018.10.027

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  109. Potter BA, Reuther JD, Holiday VT, Holmes CE, Miller DS, Schmuck N (2017) Early colonization of Beringia and Northern North America: Chronology, routes, and adaptive strategies. Quat Int 444:36–55. https://doi.org/10.1016/j.quaint.2017.02.034

    Article  Google Scholar 

  110. Prezant TR, Agapian JV, Bohlman MC et al (1993) Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat Genet 4:289–294. https://doi.org/10.1038/ng0793-289

    CAS  Article  PubMed  Google Scholar 

  111. Pupo AC, Pirana S, Spinelli M, Lezirovitz K, Netto RCM, Macedo LS (2008) Study of a Brazilian family presenting non-syndromic hearing loss with mitochondrial inheritance. Braz J Otorhinolaryngol 74:786–789. https://doi.org/10.1016/S1808-8694(15)31392-6

    Article  PubMed  Google Scholar 

  112. Putcha GV, Bejjani BA, Bleoo S et al (2007) (2007) A multicenter study of the frequency and distribution of GJB2 and GJB6 mutations in a large North American cohort. Genet Med 9(7):413–426. https://doi.org/10.1097/GIM.0b013e3180a03276

    CAS  Article  PubMed  Google Scholar 

  113. Rabionet R, Morales-Peralta E, López-Bigas N, Arbonés ML, Estivill X (2006) A novel G21R mutation of the GJB2 gene causes autosomal dominant non-syndromic congenital deafness in a Cuban family. Genet Mol Biol 29:443–445

    CAS  Article  Google Scholar 

  114. Raghavan M, Steinrücken M, Harris K et al (2015) POPULATION GENETICS. Genomic evidence for the Pleistocene and recent population history of Native Americans. Science 349:aab384. https://doi.org/10.1126/science.aab3884

    CAS  Article  Google Scholar 

  115. Ramos PZ, de Moraes VC, Svidnicki MC et al (2013) Etiologic and diagnostic evaluation: algorithm for severe to profound sensorineural hearing loss in Brazil. Int J Audiol 52:746–752. https://doi.org/10.3109/14992027.2013.817689

    Article  PubMed  Google Scholar 

  116. Reich D, Patterson N, Campbell D et al (2012) Reconstructing Native American population history. Nature 488:370–374. https://doi.org/10.1038/nature11258

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  117. Reynoso RA, Hendl S, Barteik ME et al (2004) Genetic study of hearing loss in families from Argentina. Rev Fa Cien Med Univ Nac Cordoba 61:13–19 (PMID: 15366230)

    Google Scholar 

  118. Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  119. Rodrigues-Soares F, Peñas-Lledó EM, Tarazona-Santos E et al (2020) Genomic ancestry, CYP2D6, CYP2C9, and CYP2C19 among Latin Americans. Clin Pharmacol Ther 107:257–268. https://doi.org/10.1002/cpt.1598

    CAS  Article  PubMed  Google Scholar 

  120. Rodríguez-Ballesteros M, del Castillo FJ, Martín Y et al (2003) Auditory neuropathy in patients carrying mutations in the OTOFerlin gene (OTOF). Hum Mutat 22:451–456. https://doi.org/10.1002/humu.10274

    CAS  Article  PubMed  Google Scholar 

  121. Rodríguez-Ballesteros M, Reynoso R, Olarte M et al (2008) A multicenter study on the prevalence and spectrum of mutations in the otoferlin gene (OTOF) in subjects with nonsyndromic hearing impairment and auditory neuropathy. Hum Mutat 29:823–831. https://doi.org/10.1002/humu.20708

    CAS  Article  PubMed  Google Scholar 

  122. Romanos J, Kimura L, Fávero ML et al (2009) Novel OTOF mutations in Brazilian patients with auditory neuropathy. J Hum Genet 54:382–385. https://doi.org/10.1038/jhg.2009.45

    CAS  Article  PubMed  Google Scholar 

  123. Rosenberg C, Freitas ÉL, Uehara DT et al (2016) Genomic copy number alterations in non-syndromic hearing loss. Clin Genet 89:473–477. https://doi.org/10.1111/cge.12683

    CAS  Article  PubMed  Google Scholar 

  124. Rothrock CR, Murgia A, Sartorato EL et al (2003) Connexin 26 35delG does not represent a mutational hotspot. Hum Genet 113:18–23. https://doi.org/10.1007/s00439-003-0944-2

    CAS  Article  PubMed  Google Scholar 

  125. Salazar-Silva RS, Dantas VLG, Alves LU et al (2021) NCOA3 identified as a new candidate to explain autosomal dominant progressive hearing loss. Hum Mol Genet 29:3691–3705. https://doi.org/10.1093/hmg/ddaa240

    CAS  Article  PubMed  Google Scholar 

  126. Salomão KB, Ayo CM, Della-Rosa VA (2013) Investigation of the A1555G mutation in mitochondrial DNA (MT-RNR1) in groups of Brazilian individuals with nonsyndromic deafness and normal-hearing. Indian J Hum Genet 19:54–57. https://doi.org/10.4103/0971-6866.112888

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. Salzano FM, Bortolini MC (2002) The evolution and genetics of Latin American populations. Cambridge University Press, Cambridge, p 512

    Google Scholar 

  128. Salzano FM, Sans M (2014) Interethnic admixture and the evolution of Latin American populations. Genet Mol Biol 37:151–170. https://doi.org/10.1590/s1415-47572014000200003

    Article  PubMed  Google Scholar 

  129. Samanich J, Lowes C, Burk R, Shanske S, Lu J, Shanske A, Morrow BE (2007) Mutations in GJB2, GJB6, and mitochondrial DNA are rare in African American and Caribbean Hispanic individuals with hearing impairment. Am J Med Genet A 143A:830–838. https://doi.org/10.1002/ajmg.a.31668

    CAS  Article  PubMed  Google Scholar 

  130. Sampaio-Silva J, Batissoco AC, Jesus-Santos R et al (2018) Exome Sequencing identifies a novel nonsense mutation of MYO6 as the cause of deafness in a Brazilian family. Ann Hum Genet 82:23–34. https://doi.org/10.1111/ahg.12213

    CAS  Article  PubMed  Google Scholar 

  131. Santarelli R, del Castillo I, Cama E, Scimemi P, Starr A (2015) Audibility, speech perception and processing of temporal cues in ribbon synaptic disorders due to OTOF mutations. Hear Res 330:200–212. https://doi.org/10.1016/j.heares.2015.07.007

    Article  PubMed  Google Scholar 

  132. Sartorato EL, Gottardi E, de Oliveira CA et al (2000) Determination of the frequency of the 35delG allele in Brazilian neonates. Clin Genet 58:339–340. https://doi.org/10.1034/j.1399-0004.2000.580415.x

    CAS  Article  PubMed  Google Scholar 

  133. Saunders JE, Vaz S, Greinwald JH, Lai J, Morin L, Mojica K (2007) Prevalence and etiology of hearing loss in rural Nicaraguan children. Laryngoscope 117:387–398. https://doi.org/10.1097/MLG.0b013e31802e3726

    Article  PubMed  Google Scholar 

  134. Saunders JE, Greinwald JH, Vaz SG, Y, (2009) Aminoglycoside ototoxicity in Nicaraguan children: patient risk factors and mitochondrial DNA results. Otolaryngol Head Neck Surg 140:103–107. https://doi.org/10.1016/j.otohns.2008.09.027

    Article  PubMed  Google Scholar 

  135. Schüffner ROA, Nascimento KL, Dias FA et al (2020) Molecular study of hearing loss in Minas Gerais, Brazil. Braz J Otorhinolaryngol 86:327–331. https://doi.org/10.1016/j.bjorl.2018.12.005

    Article  PubMed  Google Scholar 

  136. Sevior KB, Hatamochi A, Stewart IA et al (1998) Mitochondrial A7445G mutation in two pedigrees with palmoplantar keratoderma and deafness. Am J Med Genet 75:179–185

    CAS  Article  Google Scholar 

  137. Silva MA, Belintani Piatto V, Maniglia JV (2015) Molecular approach of auditory neuropathy. Braz J Otorhinolaryngol 81:321–328. https://doi.org/10.1016/j.bjorl.2015.03.005

    Article  PubMed  Google Scholar 

  138. Sloan-Heggen CM, Bierer AO, Shearer AE et al (2016) Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss. Hum Genet 135:441–450. https://doi.org/10.1007/s00439-016-1648-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  139. Smith RJH, Iwasa Y, Schaerfer AM (2020) Pendred syndrome/nonsyndromic enlarged vestibular aqueduct. GeneReviews. https://www.ncbi.nlm.nih.gov/books/NBK1467/. Accessed 20 May 2021

  140. Svidnicki MC, Silva-Costa SM, Ramos PZ et al (2015) Screening of genetic alterations related to non-syndromic hearing loss using MassARRAYiPLEX® technology. BMC Med Genet 16:85. https://doi.org/10.1186/s12881-015-0232-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  141. Tamayo ML, Olarte M, Gelvez N et al (2009) Molecular studies in the GJB2 gene (Cx26) among a deaf population from Bogota, Colombia: results of a screening program. Int J Pediatr Otorhinolaryngol 273:97–101. https://doi.org/10.1016/j.ijporl.2008.10.001

    Article  Google Scholar 

  142. Tamm E, Kivisild T, Reidla M et al (2007) Beringian standstill and spread of Native American founders. PLoS ONE 2:e829. https://doi.org/10.1371/journal.pone.0000829

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  143. Tesolin P, Morgan A, Notarangelo M et al (2021) Non-syndromic autosomal dominant hearing loss: the first italian family carrying a mutation in the NCOA3 gene. Genes 12:1043. https://doi.org/10.3390/genes12071043

    Article  PubMed  PubMed Central  Google Scholar 

  144. Tsukada K, Nishio SY, Hattori M, Usami S (2015a) Ethnic-specific spectrum of GJB2 and SLC26A4 mutations: their origin and a literature review. Ann Otol Rhinol Laryngol 124(Suppl 1):61S-76S. https://doi.org/10.1177/0003489415575060

    Article  PubMed  Google Scholar 

  145. Tsukada K, Ichinose A, Miyagawa M et al (2015b) Detailed hearing and vestibular profiles in the patients with COCH mutations. Ann Otol Rhinol Laryngol 124(Suppl 1):100S-S110. https://doi.org/10.1177/0003489415573074

    Article  PubMed  Google Scholar 

  146. Uehara DT, Rincon D, Abreu-Silva RS et al (2010) (2010) Role of the mitochondrial mutations, m.827A>G and the novel m.7462C>T, in the origin of hearing loss. Genet Test Mol Biomark 14(5):611–6. https://doi.org/10.1089/gtmb.2010.0011

    CAS  Article  Google Scholar 

  147. Uehara DT, Freitas ÉL, Alves LU et al (2015) A novel KCNQ4 mutation and a private IMMP2L-DOCK4 duplication segregating with nonsyndromic hearing loss in a Brazilian family. Hum Genome Var 2:15038. https://doi.org/10.1038/hgv.2015.38

    Article  PubMed  PubMed Central  Google Scholar 

  148. Utrera R, Ridaura V, Rodríguez Y et al (2007) Detection of the 35delG/GJB2 and del(GJB6-D13S1830) mutations in Venezuelan patients with autosomal recessive nonsyndromic hearing loss. Genet Test 11:347–352. https://doi.org/10.1089/gte.2006.0526

    CAS  Article  PubMed  Google Scholar 

  149. Varga R, Avenarius MR, Kelley PM et al (2006) OTOF mutations revealed by genetic analysis of hearing loss families including a potential temperature sensitive auditory neuropathy allele. J Med Genet 43:576–581. https://doi.org/10.1136/jmg.2005.038612

    CAS  Article  PubMed  Google Scholar 

  150. Wang S, Ray N, Rojas W et al (2008) Geographic patterns of genome admixture in Latin American Mestizos. PLoS Genet 4(3):e1000037. https://doi.org/10.1371/journal.pgen.1000037

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  151. Weller M, Tanieri M, Pereira JC, Almeida Edos S, Kok F, Santos S (2012) Consanguineous unions and the burden of disability: a population-based study in communities of Northeastern Brazil. Am J Hum Biol 24:835–840. https://doi.org/10.1002/ajhb.22328

    Article  PubMed  Google Scholar 

  152. Yasunaga S, Grati M, Cohen-Salmon M et al (1999) A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness. Nat Genet 21:363–369. https://doi.org/10.1038/7693

    CAS  Article  PubMed  Google Scholar 

  153. Zelante L, Gasparini P, Estivill X et al (1997) Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet 6:1605–1609. https://doi.org/10.1093/hmg/6.9.1605

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Kelly Nunes for her critical reading of the manuscript. The authors are indebted to Ms. André Silva Bueno, Ms. Larissa Antunes, Bianca Pauer Resende Santiago, and Maria Teresa Ballester de M. Auricchio for technical assistance. We are also grateful to FAPESP and CNPq for their financial support. We thank all family members for participation in the study.

Funding

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP—CEPID Human Genome and Stem Cell Research Center 2013/08028–1) and CNPq (406943/2018–4).

Author information

Affiliations

Authors

Contributions

Conducted the literature review and wrote the paper: KL and RCMN.

Corresponding author

Correspondence to Karina Lezirovitz.

Ethics declarations

Conflicts of interest/Competing interests

The corresponding author states that there is no conflict of interest on behalf of all authors.

Ethics approval

The study was approved by the Institutional Ethics Committee (Biosciences Institute, University of São Paulo).

Consent to participate

Written informed consent was obtained from participants or guardians of participants. The study was approved by the Institutional Ethics Committee (Biosciences Institute, University of São Paulo).

Consent for publication

Written informed consent was obtained from participants or guardians of participants. The study was approved by the Institutional Ethics Committee (Biosciences Institute, University of São Paulo).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

439_2021_2354_MOESM1_ESM.pdf

Supplementary Figure S1: A Flow diagram of the numbers of publications retrieved in the search, numbers of the publications which met exclusion criteria and number of included publications; B map showing the number of publications in each country; C classification of all publications per genes analyzed, showing the contribution of each country; D publications divided per country, publications that described subjects from more than one country are underlined

Supplementary file2 (DOCX 24 kb)

Supplementary file3 (DOCX 20 kb)

Supplementary file4 (DOCX 15 kb)

Supplementary file5 (DOCX 40 kb)

Supplementary file6 (DOCX 82 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lezirovitz, K., Mingroni-Netto, R.C. Genetic etiology of non-syndromic hearing loss in Latin America. Hum Genet (2021). https://doi.org/10.1007/s00439-021-02354-4

Download citation