Skip to main content

Identification of autosomal recessive nonsyndromic hearing impairment genes through the study of consanguineous and non-consanguineous families: past, present, and future

Abstract

Hearing impairment (HI) is one of the most common sensory disabilities with exceptionally high genetic heterogeneity. Of genetic HI cases, 30% are syndromic and 70% are nonsyndromic. For nonsyndromic (NS) HI, 77% of the cases are due to autosomal recessive (AR) inheritance. ARNSHI is usually congenital/prelingual, severe-to-profound, affects all frequencies and is not progressive. Thus far, 73 ARNSHI genes have been identified. Populations with high rates of consanguinity have been crucial in the identification of ARNSHI genes, and 92% (67/73) of these genes were identified in consanguineous families. Recent changes in genomic technologies and analyses have allowed a shift towards ARNSHI gene discovery in outbred populations. The latter is crucial towards understanding the genetic architecture of ARNSHI in diverse and understudied populations. We present an overview of the 73 ARNSHI genes, the methods used to identify them, including next-generation sequencing which revolutionized the field, and new technologies that show great promise in advancing ARNSHI discoveries.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Adadey SM, Wonkam-Tingang E, Twumasi Aboagye E et al (2020) Connexin genes variants associated with non-syndromic hearing impairment: a systematic review of the global burden. Life 10:258. https://doi.org/10.3390/life10110258

    CAS  Article  PubMed Central  Google Scholar 

  2. Ahmad J, Khan SN, Khan SY et al (2005) DFNB48, a new nonsyndromic recessive deafness locus, maps to chromosome 15q23-q25.1. Hum Genet 116:407–412. https://doi.org/10.1007/s00439-004-1247-y

    CAS  Article  PubMed  Google Scholar 

  3. Ahmed ZM, Morell RJ, Riazuddin S et al (2003a) Mutations of MYO6 are associated with recessive deafness, DFNB37. Am J Hum Genet 72:1315–1322. https://doi.org/10.1086/375122

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Ahmed ZM, Riazuddin S, Ahmad J, Bernstein SL (2003b) PCDH15 is expressed in the neurosensory epithelium of the eye and ear and mutant alleles are responsible for both USH1F and DFNB23. Hum Mol Genet. https://doi.org/10.1093/hmg/ddg358

    Article  PubMed  Google Scholar 

  5. Ahmed ZM, Yousaf R, Lee BC et al (2011) Functional null mutations of MSRB3 encoding methionine sulfoxide reductase are associated with human deafness DFNB74. Am J Hum Genet 88:19–29. https://doi.org/10.1016/j.ajhg.2010.11.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Ali R, Rehman A, Khan S et al (2012) DFNB86, a novel autosomal recessive non-syndromic deafness locus on chromosome 16p13.3. Clin Genet 81:498–500. https://doi.org/10.1111/j.1399-0004.2011.01729.x

    CAS  Article  PubMed  Google Scholar 

  7. Ansar M, Ramzan M, Pham TL et al (2003) Localization of a novel autosomal recessive non-syndromic hearing impairment locus (DFNB38) to 6q26-q27 in a consanguineous kindred from Pakistan. Hum Hered 55:71–74. https://doi.org/10.1159/000071813

    CAS  Article  PubMed  Google Scholar 

  8. Ansar M, Chahrour MH, Amin ud Din M et al (2004) DFNB44, a novel autosomal recessive non-syndromic hearing impairment locus, maps to chromosome 7p14.1-q11.22. Hum Hered 57:195–199. https://doi.org/10.1159/000081446

    CAS  Article  PubMed  Google Scholar 

  9. Anwar WA, Khyatti M, Hemminki K (2014) Consanguinity and genetic diseases in North Africa and immigrants to Europe. Eur J Public Health 24:57–63. https://doi.org/10.1093/eurpub/cku104

    Article  PubMed  Google Scholar 

  10. Aslam M, Wajid M, Chahrour MH et al (2005) A novel autosomal recessive nonsyndromic hearing impairment locus (DFNB42) maps to chromosome 3q13.31-q22.3. Am J Med Genet A 133A:18–22. https://doi.org/10.1002/ajmg.a.30508

    Article  PubMed  PubMed Central  Google Scholar 

  11. Astuto LM, Bork JM, Weston MD et al (2002) CDH23 mutation and phenotype heterogeneity: a profile of 107 diverse families with usher syndrome and nonsyndromic deafness. Am J Hum Genet 71:262–275. https://doi.org/10.1086/341558

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Baldwin CT, Weiss S, Farrer LA et al (1995) Linkage of congenital, recessive deafness (DFNB4) to chromosome 7q31 and evidence for genetic heterogeneity in the Middle Eastern Druze population. Hum Mol Genet 4:1637–1642. https://doi.org/10.1093/hmg/4.9.1637

    CAS  Article  PubMed  Google Scholar 

  13. Barrett T, Wilhite SE, Ledoux P et al (2012) NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 41:D991–D995. https://doi.org/10.1093/nar/gks1193

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Basit S, Lee K, Habib R et al (2011) DFNB89, a novel autosomal recessive nonsyndromic hearing impairment locus on chromosome 16q21-q23.2. Hum Genet 129:379–385. https://doi.org/10.1007/s00439-010-0934-0

    Article  PubMed  Google Scholar 

  15. Behlouli A, Bonnet C, Abdi S et al (2014) EPS8, encoding an actin-binding protein of cochlear hair cell stereocilia, is a new causal gene for autosomal recessive profound deafness. Orphanet J Rare Dis 9:55. https://doi.org/10.1186/1750-1172-9-55

    Article  PubMed  PubMed Central  Google Scholar 

  16. Booth KT, Kahrizi K, Najmabadi H et al (2018) Old gene, new phenotype: splice-altering variants in CEACAM16 cause recessive non-syndromic hearing impairment. J Med Genet 55:555–560. https://doi.org/10.1136/jmedgenet-2018-105349

    CAS  Article  PubMed  Google Scholar 

  17. Borck G, Rehman AU, Lee K et al (2011) Loss-of-function mutations of ildr1 cause autosomal-recessive hearing impairment DFNB42. Am J Hum Genet 88:127–137. https://doi.org/10.1016/j.ajhg.2010.12.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Bork JM, Peters LM, Riazuddin S et al (2001) Usher syndrome 1D and nonsyndromic autosomal recessive deafness DFNB12 are caused by allelic mutations of the novel cadherin-like gene CDH23. Am J Hum Genet 68:26–37. https://doi.org/10.1086/316954

    CAS  Article  PubMed  Google Scholar 

  19. Buniello A, Ingham NJ, Lewis MA et al (2016) Wbp2 is required for normal glutamatergic synapses in the cochlea and is crucial for hearing. EMBO Mol Med 8:191–207. https://doi.org/10.15252/emmm.201505523

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Campbell DA, McHale DP, Brown KA et al (1997) A new locus for non-syndromal, autosomal recessive, sensorineural hearing loss (DFNB16) maps to human chromosome 15q21-q22. J Med Genet 34:1015–1017. https://doi.org/10.1136/jmg.34.12.1015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Chadly DM, Best J, Ran C et al (2018) Developmental profiling of microRNAs in the human embryonic inner ear. PLoS ONE 13:e0191452. https://doi.org/10.1371/journal.pone.0191452

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Chaib H, Place C, Salem N et al (1996a) A gene responsible for a sensorineural nonsyndromic recessive deafness maps to chromosome 2p22-23. Hum Mol Genet 5:155–158. https://doi.org/10.1093/hmg/5.1.155

    CAS  Article  PubMed  Google Scholar 

  23. Chaib H, Place C, Salem N, Dode C (1996b) Mapping of DFNB12, a gene for a non-syndromal autosomal recessive deafness, to chromosome 10q21-22. Hum Mol Genet 5:1061–1064. https://doi.org/10.1093/hmg/5.7.1061

    CAS  Article  PubMed  Google Scholar 

  24. Chakchouk I, Zhang D, Zhang Z et al (2019) Disparities in discovery of pathogenic variants for autosomal recessive non-syndromic hearing impairment by ancestry. Eur J Hum Genet 27:1456–1465. https://doi.org/10.1038/s41431-019-0417-2

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chan DK, Chang KW (2014) GJB2-associated hearing loss: systematic review of worldwide prevalence, genotype, and auditory phenotype: systematic review of Cx-26-associated hearing loss. Laryngoscope 124:E34–E53. https://doi.org/10.1002/lary.24332

    Article  PubMed  Google Scholar 

  26. Charizopoulou N, Lelli A, Schraders M et al (2011) Gipc3 mutations associated with audiogenic seizures and sensorineural hearing loss in mouse and human. Nat Commun 2:201. https://doi.org/10.1038/ncomms1200

    CAS  Article  PubMed  Google Scholar 

  27. Chen A, Wayne S, Bell A et al (1997) New gene for autosomal recessive non-syndromic hearing loss maps to either chromosome 3q or 19p. Am J Med Genet 71:467–471

    CAS  Article  Google Scholar 

  28. Chen W, Kahrizi K, Meyer NC et al (2005) Mutation of COL11A2 causes autosomal recessive non-syndromic hearing loss at the DFNB53 locus. J Med Genet 42:e61–e61. https://doi.org/10.1136/jmg.2005.032615

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Chen S, Dong C, Wang Q et al (2016) Targeted next-generation sequencing successfully detects causative genes in Chinese patients with hereditary hearing loss. Genet Test Mol Biomark 20:660–665. https://doi.org/10.1089/gtmb.2016.0051

    CAS  Article  Google Scholar 

  30. Cho Y, Gong T-WL, Stӧver T et al (2002) Gene expression profiles of the rat cochlea, cochlear nucleus, and inferior colliculus. JARO J Assoc Res Otolaryngol 3:54–67. https://doi.org/10.1007/s101620010042

    Article  PubMed  Google Scholar 

  31. Collin RWJ, Kalay E, Tariq M et al (2008) Mutations of ESRRB encoding estrogen-related receptor beta cause autosomal-recessive nonsyndromic hearing impairment DFNB35. Am J Hum Genet 82:125–138. https://doi.org/10.1016/j.ajhg.2007.09.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Dahmani M, Ammar-Khodja F, Bonnet C et al (2015) EPS8L2 is a new causal gene for childhood onset autosomal recessive progressive hearing loss. Orphanet J Rare Dis 10:96. https://doi.org/10.1186/s13023-015-0316-8

    Article  PubMed  PubMed Central  Google Scholar 

  33. del Castillo I, Villamar M, Moreno-Pelayo MA et al (2002) A Deletion involving the connexin 30 gene in nonsyndromic hearing impairment. N Engl J Med 346:243–249. https://doi.org/10.1056/NEJMoa012052

    Article  PubMed  Google Scholar 

  34. Delmaghani S, del Castillo FJ, Michel V et al (2006) Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nat Genet 38:770–778. https://doi.org/10.1038/ng1829

    CAS  Article  PubMed  Google Scholar 

  35. Delmaghani S, Aghaie A, Michalski N et al (2012) Defect in the gene encoding the EAR/EPTP domain-containing protein TSPEAR causes DFNB98 profound deafness. Hum Mol Genet 21:3835–3844. https://doi.org/10.1093/hmg/dds212

    CAS  Article  PubMed  Google Scholar 

  36. Delmaghani S, Aghaie A, Bouyacoub Y et al (2016) Mutations in CDC14A, encoding a protein phosphatase involved in hair cell ciliogenesis, cause autosomal-recessive severe to profound deafness. Am J Hum Genet 98:1266–1270. https://doi.org/10.1016/j.ajhg.2016.04.015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Diaz-Horta O, Subasioglu-Uzak A, Grati M et al (2014) FAM65B is a membrane-associated protein of hair cell stereocilia required for hearing. Proc Natl Acad Sci 111:9864–9868. https://doi.org/10.1073/pnas.1401950111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Diaz-Horta O, Abad C, Sennaroglu L et al (2016) ROR1 is essential for proper innervation of auditory hair cells and hearing in humans and mice. Proc Natl Acad Sci 113:5993–5998. https://doi.org/10.1073/pnas.1522512113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. DiStefano MT, Hemphill SE, Oza MA et al (2019) ClinGen expert clinical validity curation of 164 hearing loss gene–disease pairs. Genet Med 21:2239–2247. https://doi.org/10.1038/s41436-019-0487-0

    Article  PubMed  PubMed Central  Google Scholar 

  40. Du X, Schwander M, Moresco EMY et al (2008) A catechol-O-methyltransferase that is essential for auditory function in mice and humans. Proc Natl Acad Sci 105:14609–14614. https://doi.org/10.1073/pnas.0807219105

    Article  PubMed  PubMed Central  Google Scholar 

  41. Friedman TB, Liang Y, Weber JL et al (1995) A gene for congenital, recessive deafness DFNB3 maps to the pericentromeric region of chromosome 17. Nat Genet 9:86–91. https://doi.org/10.1038/ng0195-86

    CAS  Article  PubMed  Google Scholar 

  42. Fukushima K, Ramesh A, Srisailapathy CRS et al (1995) Consanguineous nuclear families used to identify a new locus for recessive non-syndromic hearing loss on 14q. Hum Mol Genet 4:1643–1648. https://doi.org/10.1093/hmg/4.9.1643

    CAS  Article  PubMed  Google Scholar 

  43. Genome Aggregation Database Consortium, Karczewski KJ, Francioli LC et al (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581:434–443. https://doi.org/10.1038/s41586-020-2308-7

    CAS  Article  Google Scholar 

  44. Girotto G, Abdulhadi K, Buniello A et al (2013) Linkage study and exome sequencing identify a BDP1 mutation associated with hereditary hearing loss. PLoS ONE 8:e80323. https://doi.org/10.1371/journal.pone.0080323

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Grati M, Chakchouk I, Ma Q et al (2015) A missense mutation in DCDC2 causes human recessive deafness DFNB66, likely by interfering with sensory hair cell and supporting cell cilia length regulation. Hum Mol Genet 24:2482–2491. https://doi.org/10.1093/hmg/ddv009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Grillet N, Schwander M, Hildebrand MS et al (2009) Mutations in LOXHD1, an evolutionarily conserved stereociliary protein, disrupt hair cell function in mice and cause progressive hearing loss in humans. Am J Hum Genet 85:328–337. https://doi.org/10.1016/j.ajhg.2009.07.017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Guilford P, Arab SB, Blanchard S et al (1994a) A non–syndromic form of neurosensory, recessive deafness maps to the pericentromeric region of chromosome 13q. Nat Genet 6:24–28. https://doi.org/10.1038/ng0194-24

    CAS  Article  PubMed  Google Scholar 

  48. Guilford P, Ayadi H, Blanchard S et al (1994b) A human gene responsible for neurosensory, non-syndromic recessive deafness is a candidate homologue of the mouse sh-1 gene. Hum Mol Genet 3:989–993. https://doi.org/10.1093/hmg/3.6.989

    CAS  Article  PubMed  Google Scholar 

  49. Horn HF, Brownstein Z, Lenz DR et al (2013) The LINC complex is essential for hearing. J Clin Invest. https://doi.org/10.1172/JCI66911

    Article  PubMed  PubMed Central  Google Scholar 

  50. Imtiaz A, Kohrman DC, Naz S (2014) A frameshift mutation in GRXCR2 causes recessively inherited hearing loss. Hum Mutat 35:618–624. https://doi.org/10.1002/humu.22545

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Ingham NJ, Pearson SA, Vancollie VE et al (2019) Mouse screen reveals multiple new genes underlying mouse and human hearing loss. PLOS Biol 17:e3000194. https://doi.org/10.1371/journal.pbio.3000194

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Irshad S, Santos R, Muhammad D et al (2005) Localization of a novel autosomal recessive non-syndromic hearing impairment locus DFNB55 to chromosome 4q12-q13.2: hearing impairment locus DFNB55. Clin Genet 68:262–267. https://doi.org/10.1111/j.1399-0004.2005.00492.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Jain PK, Fukushima K, Deshmukh D et al (1995) A human recessive neurosensory nonsyndromic hearing impairment locus is a potential homologue of the murine deafness (dn ) locus. Hum Mol Genet 4:2391–2394. https://doi.org/10.1093/hmg/4.12.2391

    CAS  Article  PubMed  Google Scholar 

  54. Jain PK, Lalwani AK, Li XC et al (1998) A gene for recessive nonsyndromic sensorineural deafness (DFNB18) maps to the chromosomal region 11p14–p15.1 containing the usher syndrome type 1C gene. Genomics 50:290–292. https://doi.org/10.1006/geno.1998.5320

    CAS  Article  PubMed  Google Scholar 

  55. JanssensdeVarebeke SPF, Van Camp G, Peeters N et al (2018) Bi-allelic inactivating variants in the COCH gene cause autosomal recessive prelingual hearing impairment. Eur J Hum Genet 26:587–591. https://doi.org/10.1038/s41431-017-0066-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Jaworek TJ, Richard EM, Ivanova AA et al (2013) An alteration in ELMOD3, an Arl2 GTPase-activating protein, is associated with hearing impairment in humans. PLoS Genet 9:e1003774. https://doi.org/10.1371/journal.pgen.1003774

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Kelsell DP, Dunlop J, Stevens HP et al (1997) Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387:80–83. https://doi.org/10.1038/387080a0

    CAS  Article  PubMed  Google Scholar 

  58. Khalil A, Karroum SB, Barake R et al (2020) Post-lingual non-syndromic hearing loss phenotype: a polygenic case with 2 biallelic mutations in MYO15A and MITF. BMC Med Genet 21:1. https://doi.org/10.1186/s12881-019-0942-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Khan SY, Ahmed ZM, Shabbir MI et al (2007) Mutations of the RDX gene cause nonsyndromic hearing loss at the DFNB24 locus. Hum Mutat 28:417–423. https://doi.org/10.1002/humu.20469

    CAS  Article  PubMed  Google Scholar 

  60. Khan SY, Riazuddin S, Shahzad M et al (2010) DFNB79: reincarnation of a nonsyndromic deafness locus on chromosome 9q34.3. Eur J Hum Genet 18:125–129. https://doi.org/10.1038/ejhg.2009.121

    CAS  Article  PubMed  Google Scholar 

  61. Kolla L, Kelly MC, Mann ZF et al (2020) Characterization of the development of the mouse cochlear epithelium at the single cell level. Nat Commun 11:2389. https://doi.org/10.1038/s41467-020-16113-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Kurima K, Peters LM, Yang Y et al (2002) Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function. Nat Genet 30:277–284. https://doi.org/10.1038/ng842

    Article  PubMed  Google Scholar 

  63. Lander E, Botstein D (1987) Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 236:1567–1570. https://doi.org/10.1126/science.2884728

    CAS  Article  PubMed  Google Scholar 

  64. Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247. https://doi.org/10.1038/ng1195-241

    CAS  Article  PubMed  Google Scholar 

  65. Landrum MJ, Lee JM, Benson M et al (2018) ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 46:D1062–D1067. https://doi.org/10.1093/nar/gkx1153

    CAS  Article  PubMed  Google Scholar 

  66. Li XC, Everett LA, Lalwani AK et al (1998) A mutation in PDS causes non-syndromic recessive deafness. Nat Genet 18:215–217. https://doi.org/10.1038/ng0398-215

    CAS  Article  PubMed  Google Scholar 

  67. Li J, Zhao X, Xin Q et al (2015) Whole-exome sequencing identifies a variant in TMEM132E causing autosomal-recessive nonsyndromic hearing loss DFNB99. Hum Mutat 36:98–105. https://doi.org/10.1002/humu.22712

    CAS  Article  PubMed  Google Scholar 

  68. Li C, Bademci G, Subasioglu A et al (2019) Dysfunction of GRAP, encoding the GRB2-related adaptor protein, is linked to sensorineural hearing loss. Proc Natl Acad Sci 116:1347–1352. https://doi.org/10.1073/pnas.1810951116

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Liu X-Z, Walsh J, Mburu P et al (1997) Mutations in the myosin VIIA gene cause non-syndromic recessive deafness. Nat Genet 16:188–190. https://doi.org/10.1038/ng0697-188

    CAS  Article  PubMed  Google Scholar 

  70. Liu XZ, Ouyang XM, Xia JX et al (2003) Prestin, a cochlear motor protein, is defective in non-syndromic hearing loss. Hum Mol Genet 12:1155–1162. https://doi.org/10.1093/hmg/ddg127

    CAS  Article  PubMed  Google Scholar 

  71. Liu X, Wu C, Li C, Boerwinkle E (2016) dbNSFP v3.0: a one-stop database of functional predictions and annotations for human nonsynonymous and splice-site SNVs. Hum Mutat 37:235–241. https://doi.org/10.1002/humu.22932

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Masmoudi S, Tlili A, Majava M et al (2003) Mapping of a new autosomal recessive nonsyndromic hearing loss locus (DFNB32) to chromosome 1p13.3-22.1. Eur J Hum Genet 11:185–188. https://doi.org/10.1038/sj.ejhg.5200934

    CAS  Article  PubMed  Google Scholar 

  73. Mburu P, Mustapha M, Varela A et al (2003) Defects in whirlin, a PDZ domain molecule involved in stereocilia elongation, cause deafness in the whirler mouse and families with DFNB31. Nat Genet 34:421–428. https://doi.org/10.1038/ng1208

    CAS  Article  PubMed  Google Scholar 

  74. McKusick VA (2007) Mendelian inheritance in man and its online version, OMIM. Am J Hum Genet 80:588–604. https://doi.org/10.1086/514346

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Mittal R, Patel AP, Nguyen D et al (2018) Genetic basis of hearing loss in Spanish, Hispanic and Latino populations. Gene 647:297–305. https://doi.org/10.1016/j.gene.2018.01.027

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Morton NE (1955) Sequential tests for the detection of linkage. Am J Hum Genet 7(3):277–318

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mujtaba G, Schultz JM, Imtiaz A et al (2015) A mutation of MET, encoding hepatocyte growth factor receptor, is associated with human DFNB97 hearing loss. J Med Genet 52:548–552. https://doi.org/10.1136/jmedgenet-2015-103023

    CAS  Article  PubMed  Google Scholar 

  78. Mustapha M, Chardenoux S, Nieder A et al (1998a) A sensorineural progressive autosomal recessive form of isolated deafness, DFNB13, maps to chromosome 7q34-q36. Eur J Hum Genet 6:245–250. https://doi.org/10.1038/sj.ejhg.5200177

    CAS  Article  PubMed  Google Scholar 

  79. Mustapha M, Weil D, Chardenoux S, et al (1998b) An α-tectorin gene defect causes a newly identified autosomal recessive form of sensorineural pre-lingual non-syndromic deafness, DFNB2. 4

  80. Mustapha M, Chouery E, Chardenoux S et al (2002) DFNB31, a recessive form of sensorineural hearing loss, maps to chromosome 9q32–34. Eur J Hum Genet. https://doi.org/10.1038/sj.ejhg.5200780

    Article  PubMed  Google Scholar 

  81. Naz S, Giguere CM, Kohrman DC et al (2002) Mutations in a novel gene, TMIE, are associated with hearing loss linked to the DFNB6 locus. Am J Hum Genet 71:632–636. https://doi.org/10.1086/342193

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Naz S, Griffith AJ, Riazuddin S et al (2004) Mutations of ESPN cause autosomal recessive deafness and vestibular dysfunction. J Med Genet 41:591–595. https://doi.org/10.1136/jmg.2004.018523

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Ng SB, Buckingham KJ, Lee C et al (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42:30–35. https://doi.org/10.1038/ng.499

    CAS  Article  PubMed  Google Scholar 

  84. Orvis J, Gottfried B, Kancherla J et al (2020) gEAR: gene Expression Analysis Resource portal for community-driven, multi-omic data exploration. bioRxiV. https://doi.org/10.1101/2020.08.28.272039

    Article  Google Scholar 

  85. Ott J (1983) Linkage analysis and family classification under heterogeneity. Ann Hum Genet 47:311–320. https://doi.org/10.1111/j.1469-1809.1983.tb01001.x

    CAS  Article  PubMed  Google Scholar 

  86. Ott J, Wang J, Leal SM (2015) Genetic linkage analysis in the age of whole-genome sequencing. Nat Rev Genet 16:275–284. https://doi.org/10.1038/nrg3908

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. Ouyang X, Xia X, Verpy E et al (2002) Mutations in the alternatively spliced exons of USH1C cause non-syndromic recessive deafness. Hum Genet 111:26–30. https://doi.org/10.1007/s00439-002-0736-0

    CAS  Article  PubMed  Google Scholar 

  88. Ramzan K, Shaikh RS, Ahmad J et al (2005) A new locus for nonsyndromic deafness DFNB49 maps to chromosome 5q12.3-q14.1. Hum Genet 116:17–22. https://doi.org/10.1007/s00439-004-1205-8

    CAS  Article  PubMed  Google Scholar 

  89. Ranum PT, Goodwin AT, Yoshimura H et al (2019) Insights into the biology of hearing and deafness revealed by single-cell RNA sequencing. Cell Rep 26:3160-3171.e3. https://doi.org/10.1016/j.celrep.2019.02.053

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. Rehm HL, Berg JS, Brooks LD et al (2015) ClinGen—the clinical genome resource. N Engl J Med 372:2235–2242. https://doi.org/10.1056/NEJMsr1406261

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. Rehman AU, Morell RJ, Belyantseva IA et al (2010) Targeted capture and next-generation sequencing identifies C9orf75, encoding taperin, as the mutated gene in nonsyndromic deafness DFNB79. Am J Hum Genet 86:378–388. https://doi.org/10.1016/j.ajhg.2010.01.030

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. Rehman AU, Santos-Cortez RLP, Morell RJ et al (2014) Mutations in TBC1D24, a gene associated with epilepsy, also cause nonsyndromic deafness DFNB86. Am J Hum Genet 94:144–152. https://doi.org/10.1016/j.ajhg.2013.12.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. Riazuddin S, Castelein CM, Ahmed ZM et al (2000) Dominant modifier DFNM1 suppresses recessive deafness DFNB26. Nat Genet 26:431–434. https://doi.org/10.1038/82558

    CAS  Article  PubMed  Google Scholar 

  94. Riazuddin S, Ahmed ZM, Fanning AS et al (2006) Tricellulin is a tight-junction protein necessary for hearing. Am J Hum Genet 79:1040–1051. https://doi.org/10.1086/510022

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. Riazuddin S, Anwar S, Fischer M et al (2009) Molecular basis of DFNB73: mutations of BSND can cause nonsyndromic deafness or Bartter syndrome. Am J Hum Genet 85:273–280. https://doi.org/10.1016/j.ajhg.2009.07.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. Riazuddin S, Belyantseva IA, Giese APJ et al (2012) Alterations of the CIB2 calcium- and integrin-binding protein cause Usher syndrome type 1J and nonsyndromic deafness DFNB48. Nat Genet 44:1265–1271. https://doi.org/10.1038/ng.2426

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. Rodriguez-Paris J, Tamayo ML, Gelvez N, Schrijver I (2011) Allele-specific impairment of GJB2 expression by GJB6 deletion del(GJB6-D13S1854). PLoS ONE 6(6):e21665. https://doi.org/10.1371/journal.pone.0021665

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. Rohacek AM, Bebee TW, Tilton RK et al (2017) ESRP1 mutations cause hearing loss due to defects in alternative splicing that disrupt cochlear development. Dev Cell 43:318-331.e5. https://doi.org/10.1016/j.devcel.2017.09.026

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. Romdhane L, Mezzi N, Hamdi Y et al (2019) Consanguinity and Inbreeding in health and disease in North African populations. Annu Rev Genomics Hum Genet 20:155–179. https://doi.org/10.1146/annurev-genom-083118-014954

    CAS  Article  PubMed  Google Scholar 

  100. Saha N, Hamad RE, Mohamed S (1990) Inbreeding effects on reproductive outcome in a Sudanese population. Hum Hered 40:208–212. https://doi.org/10.1159/000153932

    CAS  Article  PubMed  Google Scholar 

  101. Santos R, Wajid M, Pham T et al (2005) Low prevalence of Connexin 26 (GJB2) variants in Pakistani families with autosomal recessive non-syndromic hearing impairment: GJB2 variants in Pakistan. Clin Genet 67:61–68. https://doi.org/10.1111/j.1399-0004.2005.00379.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  102. Santos RLP, Hassan MJ, Sikandar S et al (2006) DFNB68, a novel autosomal recessive non-syndromic hearing impairment locus at chromosomal region 19p13.2. Hum Genet 120:85–92. https://doi.org/10.1007/s00439-006-0188-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. Santos-Cortez RLP, Lee K, Azeem Z et al (2013) Mutations in KARS, encoding lysyl-tRNA synthetase, cause autosomal-recessive nonsyndromic hearing impairment DFNB89. Am J Hum Genet 93:132–140. https://doi.org/10.1016/j.ajhg.2013.05.018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. Santos-Cortez RLP, Lee K, Giese AP et al (2014) Adenylate cyclase 1 (ADCY1) mutations cause recessive hearing impairment in humans and defects in hair cell function and hearing in zebrafish. Hum Mol Genet 23:3289–3298. https://doi.org/10.1093/hmg/ddu042

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. Santos-Cortez RLP, Faridi R, Rehman AU et al (2016) Autosomal-recessive hearing impairment due to rare missense variants within S1PR2. Am J Hum Genet 98:331–338. https://doi.org/10.1016/j.ajhg.2015.12.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  106. Schraders M, Lee K, Oostrik J et al (2010a) Homozygosity mapping reveals mutations of GRXCR1 as a cause of autosomal-recessive nonsyndromic hearing impairment. Am J Hum Genet 86:138–147. https://doi.org/10.1016/j.ajhg.2009.12.017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. Schraders M, Oostrik J, Huygen PLM et al (2010b) Mutations in PTPRQ are a cause of autosomal-recessive nonsyndromic hearing impairment DFNB84 and associated with vestibular dysfunction. Am J Hum Genet 86:604–610. https://doi.org/10.1016/j.ajhg.2010.02.015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. Schraders M, Ruiz-Palmero L, Kalay E et al (2012) Mutations of the gene encoding otogelin are a cause of autosomal-recessive nonsyndromic moderate hearing impairment. Am J Hum Genet 91:883–889. https://doi.org/10.1016/j.ajhg.2012.09.012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  109. Schrauwen I, Helfmann S, Inagaki A et al (2012) A mutation in CABP2, expressed in cochlear hair cells, causes autosomal-recessive hearing impairment. Am J Hum Genet 91:636–645. https://doi.org/10.1016/j.ajhg.2012.08.018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  110. Schrauwen I, Hasin-Brumshtein Y, Corneveaux JJ et al (2016) A comprehensive catalogue of the coding and non-coding transcripts of the human inner ear. Hear Res 333:266–274. https://doi.org/10.1016/j.heares.2015.08.013

    CAS  Article  PubMed  Google Scholar 

  111. Schrauwen I, Chakchouk I, Acharya A et al (2018) Novel digenic inheritance of PCDH15 and USH1G underlies profound non-syndromic hearing impairment. BMC Med Genet 19:122. https://doi.org/10.1186/s12881-018-0618-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. Schultz JM, Khan SN, Ahmed ZM et al (2009) Noncoding mutations of HGF are associated with nonsyndromic hearing loss, DFNB39. Am J Hum Genet 85:25–39. https://doi.org/10.1016/j.ajhg.2009.06.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  113. Scott HS, Kudoh J, Wattenhofer M et al (2001) Insertion of β-satellite repeats identifies a transmembrane protease causing both congenital and childhood onset autosomal recessive deafness. Nat Genet 27:59–63. https://doi.org/10.1038/83768

    CAS  Article  PubMed  Google Scholar 

  114. Seco CZ, Oonk AM, Domínguez-Ruiz M et al (2015) Progressive hearing loss and vestibular dysfunction caused by a homozygous nonsense mutation in CLIC5. Eur J Hum Genet 23:189–194. https://doi.org/10.1038/ejhg.2014.83

    CAS  Article  PubMed  Google Scholar 

  115. Seelow D, Schuelke M, Hildebrandt F, Nurnberg P (2009) HomozygosityMapper—an interactive approach to homozygosity mapping. Nucleic Acids Res 37:W593–W599. https://doi.org/10.1093/nar/gkp369

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  116. Shabbir MI, Ahmed ZM, Khan SY et al (2006) Mutations of human TMHS cause recessively inherited non-syndromic hearing loss. J Med Genet 43:634–640. https://doi.org/10.1136/jmg.2005.039834

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  117. Shahin H, Walsh T, Sobe T et al (2006) Mutations in a novel isoform of TRIOBP that encodes a filamentous-actin binding protein are responsible for DFNB28 recessive nonsyndromic hearing loss. Am J Hum Genet 78:144–152. https://doi.org/10.1086/499495

    CAS  Article  PubMed  Google Scholar 

  118. Shahin H, Walsh T, Rayyan AA et al (2010) Five novel loci for inherited hearing loss mapped by SNP-based homozygosity profiles in Palestinian families. Eur J Hum Genet 18:407–413. https://doi.org/10.1038/ejhg.2009.190

    CAS  Article  PubMed  Google Scholar 

  119. Shearer A, Kolbe DL, Azaiez H et al (2014) Copy number variants are a common cause of non-syndromic hearing loss. Genome Med 6:37. https://doi.org/10.1186/gm554

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  120. Shen J, Scheffer DI, Kwan KY, Corey DP (2015) SHIELD: an integrative gene expression database for inner ear research. Database 2015:bav071. https://doi.org/10.1093/database/bav071

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  121. Sheppard S, Biswas S, Li MH et al (2018) Utility and limitations of exome sequencing as a genetic diagnostic tool for children with hearing loss. Genet Med 20:1663–1676. https://doi.org/10.1038/s41436-018-0004-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  122. Simon M, Richard EM, Wang X et al (2015) Mutations of human NARS2, encoding the mitochondrial asparaginyl-tRNA synthetase, cause nonsyndromic deafness and leigh syndrome. PLOS Genet 11:e1005097. https://doi.org/10.1371/journal.pgen.1005097

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  123. Sineni CJ, Yildirim-Baylan M, Guo S et al (2019) A truncating CLDN9 variant is associated with autosomal recessive nonsyndromic hearing loss. Hum Genet 138:1071–1075. https://doi.org/10.1007/s00439-019-02037-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  124. Sırmacı A, Erbek S, Price J et al (2010) A truncating mutation in SERPINB6 is associated with autosomal-recessive nonsyndromic sensorineural hearing loss. Am J Hum Genet 86:797–804. https://doi.org/10.1016/j.ajhg.2010.04.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  125. Sloan-Heggen CM, Bierer AO, Shearer AE et al (2016) Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss. Hum Genet 135:441–450. https://doi.org/10.1007/s00439-016-1648-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  126. Smith RJH, Van Camp G (1999) Non-syndromic hearing impairment: gene linkage and cloning. Int J Pediatr Otorhinolaryngol 49:S159–S163. https://doi.org/10.1016/S0165-5876(99)00153-6

    Article  PubMed  Google Scholar 

  127. Sobreira N, Schiettecatte F, Valle D, Hamosh A (2015) GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat 36:928–930. https://doi.org/10.1002/humu.22844

    Article  PubMed  PubMed Central  Google Scholar 

  128. Tabatabaiefar M, Alasti F, Shariati L et al (2011) DFNB93, a novel locus for autosomal recessive moderate-to-severe hearing impairment. Clin Genet 79:594–598. https://doi.org/10.1111/j.1399-0004.2010.01593.x

    CAS  Article  PubMed  Google Scholar 

  129. Tadmouri GO, Nair P, Obeid T et al (2009) Consanguinity and reproductive health among Arabs. Reprod Health 6:17. https://doi.org/10.1186/1742-4755-6-17

    Article  PubMed  PubMed Central  Google Scholar 

  130. Tlili A, Männikkö M, Charfedine I et al (2005) A novel autosomal recessive non-syndromic deafness locus, DFNB66, maps to chromosome 6p21.2-22.3 in a large Tunisian consanguineous family. Hum Hered 60:123–128. https://doi.org/10.1159/000088974

    Article  PubMed  Google Scholar 

  131. Ullah MA, Husseni AM, Mahmood SU (2017) Consanguineous marriages and their detrimental outcomes in Pakistan: an urgent need for appropriate measures. Int J Commun Med Public Health 5:1. https://doi.org/10.18203/2394-6040.ijcmph20175757

    Article  Google Scholar 

  132. Verpy E, Masmoudi S, Zwaenepoel I et al (2001) Mutations in a new gene encoding a protein of the hair bundle cause non-syndromic deafness at the DFNB16 locus. Nat Genet 29:345–349. https://doi.org/10.1038/ng726

    CAS  Article  PubMed  Google Scholar 

  133. Veske A, Oehlmann R, Younus F et al (1996) Autosomal recessive non-syndromic deafness locus (DFNB8) maps on chromosome 21Q22 in a large consanguineous kindred from Pakistan. Hum Mol Genet 5:165–168. https://doi.org/10.1093/hmg/5.1.165

    CAS  Article  PubMed  Google Scholar 

  134. Vona B, Hofrichter MAH, Neuner C et al (2015) DFNB16 is a frequent cause of congenital hearing impairment: implementation of STRC mutation analysis in routine diagnostics. Clin Genet 87:49–55. https://doi.org/10.1111/cge.12332

    CAS  Article  PubMed  Google Scholar 

  135. Vona B, Doll J, Hofrichter MAH, Haaf T (2020) Non-syndromic hearing loss: clinical and diagnostic challenges. Med Gen 32(2):117–129. https://doi.org/10.1515/medgen-2020-2022

    Article  Google Scholar 

  136. Vona B, Mazaheri N, Lin S-J et al (2021a) A biallelic variant in CLRN2 causes non-syndromic hearing loss in humans. Hum Genet 140:915–931. https://doi.org/10.1007/s00439-020-02254-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  137. Vona B, Mazaheri N, Lin S-J et al (2021b) A biallelic variant in CLRN2 causes non-syndromic hearing loss in humans. Hum Genet. https://doi.org/10.1007/s00439-020-02254-z

    Article  PubMed  PubMed Central  Google Scholar 

  138. Vos B, Noll D, Pigeon M et al (2019) Risk factors for hearing loss in children: a systematic literature review and meta-analysis protocol. Syst Rev 8:172. https://doi.org/10.1186/s13643-019-1073-x

    Article  PubMed  PubMed Central  Google Scholar 

  139. Wajid M, Abbasi AA, Ansar M et al (2003) DFNB39, a recessive form of sensorineural hearing impairment, maps to chromosome 7q11.22–q21.12. Eur J Hum Genet 11:812–815. https://doi.org/10.1038/sj.ejhg.5201041

    CAS  Article  PubMed  Google Scholar 

  140. Wakeling MN, Laver TW, Wright CF et al (2019) Homozygosity mapping provides supporting evidence of pathogenicity in recessive Mendelian disease. Genet Med 21:982–986. https://doi.org/10.1038/s41436-018-0281-4

    CAS  Article  PubMed  Google Scholar 

  141. Walsh T, Walsh V, Vreugde S et al (2002) From flies’ eyes to our ears: mutations in a human class III myosin cause progressive nonsyndromic hearing loss DFNB30. Proc Natl Acad Sci 99:7518–7523. https://doi.org/10.1073/pnas.102091699

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  142. Wang A, Liang Y, Fridell RA et al (1998) Association of unconventional myosin MYO15 mutations with human nonsyndromic deafness DFNB3. Science 280:1447–1451. https://doi.org/10.1126/science.280.5368.1447

    CAS  Article  PubMed  Google Scholar 

  143. Wang GT, Zhang D, Li B et al (2015) Collapsed haplotype pattern method for linkage analysis of next-generation sequence data. Eur J Hum Genet 23:1739–1743. https://doi.org/10.1038/ejhg.2015.64

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  144. Waryah A, Rehman A, Ahmed Z et al (2009) DFNB74, a novel autosomal recessive nonsyndromic hearing impairment locus on chromosome 12q14.2-q15. Clin Genet 76:270–275. https://doi.org/10.1111/j.1399-0004.2009.01209.x

    CAS  Article  PubMed  Google Scholar 

  145. Weil D, Küssel P, Blanchard S et al (1997) The autosomal recessive isolated deafness, DFNB2, and the Usher 1B syndrome are allelic defects of the myosin-VIIA gene. Nat Genet 16:191–193. https://doi.org/10.1038/ng0697-191

    CAS  Article  PubMed  Google Scholar 

  146. Wesdorp M, Murillo-Cuesta S, Peters T et al (2018) MPZL2, encoding the epithelial junctional protein myelin protein zero-like 2, is essential for hearing in man and mouse. Am J Hum Genet 103:74–88. https://doi.org/10.1016/j.ajhg.2018.05.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  147. Wilcox ER, Burton QL, Naz S et al (2001) Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell 104:165–172. https://doi.org/10.1016/S0092-8674(01)00200-8

    CAS  Article  PubMed  Google Scholar 

  148. Yariz KO, Duman D, Zazo Seco C et al (2012) Mutations in OTOGL, encoding the inner ear protein otogelin-like, cause moderate sensorineural hearing loss. Am J Hum Genet 91:872–882. https://doi.org/10.1016/j.ajhg.2012.09.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  149. Yasunaga S, Grati M, Cohen-Salmon M et al (1999) A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness. Nat Genet 21:363–369. https://doi.org/10.1038/7693

    CAS  Article  PubMed  Google Scholar 

  150. Yousaf R, Ahmed ZM, Giese APJ et al (2018a) Modifier variant of METTL13 suppresses human GAB1–associated profound deafness. J Clin Invest 128:1509–1522. https://doi.org/10.1172/JCI97350

    Article  PubMed  PubMed Central  Google Scholar 

  151. Yousaf R, Gu C, Ahmed ZM et al (2018b) Mutations in diphosphoinositol-pentakisphosphate kinase PPIP5K2 are associated with hearing loss in human and mouse. PLOS Genet 14:e1007297. https://doi.org/10.1371/journal.pgen.1007297

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  152. Yu KS, Frumm SM, Park JS, Lee KP, Wong DM, Byrnes LE, Knox S, Sneddon JB, Tward (2019) Development of the mouse and human cochlea at single cell resolution. bioRxiV

  153. Zelante L, Gasparini P, Estivill X (1997) Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet 6:1605–1609. https://doi.org/10.1093/hmg/6.9.1605

    CAS  Article  PubMed  Google Scholar 

  154. Zwaenepoel I, Mustapha M, Leibovici M et al (2002) Otoancorin, an inner ear protein restricted to the interface between the apical surface of sensory epithelia and their overlying acellular gels, is defective in autosomal recessive deafness DFNB22. Proc Natl Acad Sci 99:6240–6245. https://doi.org/10.1073/pnas.082515999

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Support was obtained from the National Institute of Deafness and other Communication Disorders grants R01 DC01165, R01 DC003594, and R01 DC016593.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Suzanne M. Leal.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Acharya, A., Schrauwen, I. & Leal, S.M. Identification of autosomal recessive nonsyndromic hearing impairment genes through the study of consanguineous and non-consanguineous families: past, present, and future. Hum Genet (2021). https://doi.org/10.1007/s00439-021-02309-9

Download citation