Skip to main content

Advertisement

Log in

Evaluating marginal genetic correlation of associated loci for complex diseases and traits between European and East Asian populations

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Genome-wide association studies (GWASs) have successfully identified a large amount of single-nucleotide polymorphisms associated with many complex phenotypes in diverse populations. However, a comprehensive understanding of the genetic correlation of associated loci of phenotypes across populations remains lacking and the extent to which associations discovered in one population can be generalized to other populations or can be utilized for trans-ethnic genetic prediction is also unclear. By leveraging summary statistics, we proposed MAGIC to evaluate the trans-ethnic marginal genetic correlation (rm) of per-allele effect sizes for associated SNPs (P < 5E-8) under the framework of measurement error models. We confirmed the methodological advantage of MAGIC over general approaches through simulations and demonstrated its utility by analyzing 34 GWAS summary statistics of phenotypes from the East Asian (Nmax = 254,373) and European (Nmax = 1,220,901) populations. Among these phenotypes, rm was estimated to range from 0.584 (se = 0.140) for breast cancer to 0.949 (se = 0.035) for age of menarche, with an average of 0.835 (se = 0.045). We also uncovered that the trans-ethnic genetic prediction accuracy for phenotypes in the target population would substantially become low when using associated SNPs identified in non-target populations, indicating that associations discovered in the one population cannot be simply generalized to another population and that the accuracy of trans-ethnic phenotype prediction is generally dissatisfactory. Overall, our study provides in-depth insight into trans-ethnic genetic correlation and prediction for complex phenotypes across diverse populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information file.

References

  • Altshuler D, Daly M, Lander E (2008) Genetic mapping in human disease. Science 322:881–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banda Y, Kvale MN, Hoffmann TJ et al (2015) Characterizing race/ethnicity and genetic ancestry for 100,000 subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. Genetics 200:1285–1295

    Article  PubMed  PubMed Central  Google Scholar 

  • Bigdeli TB, Ripke S, Peterson RE et al (2017) Genetic effects influencing risk for major depressive disorder in China and Europe. Transl Psychiatry 7:e1074–e1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bomba L, Walter K, Soranzo N (2017) The impact of rare and low-frequency genetic variants in common disease. Genome Biol 18:77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bowden J, Del Greco MF, Minelli C et al (2016) Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I 2 statistic. Int J Epidemiol 45:1961–1974

    PubMed  PubMed Central  Google Scholar 

  • Boyle EA, Li YI, Pritchard JK (2017) An expanded view of complex traits: from polygenic to omnigenic. Cell 169:1177–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown BC, Ye CJ, Price AL et al (2016) Transethnic genetic-correlation estimates from summary statistics. Am J Hum Genet 99:76–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulik-Sullivan B, Finucane HK, Anttila V et al (2015a) An atlas of genetic correlations across human diseases and traits. Nat Genet 47:1236–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulik-Sullivan BK, Loh P-R, Finucane HK et al (2015b) LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 47:291–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buonaccorsi JP (2010) Measurement error: models, methods, and applications. Chapman and Hall/CRC, New York

    Book  Google Scholar 

  • Bustamante CD, Burchard EG, De la Vega FM (2011) Genomics for the world. Nature 475:163–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll RJ, Küchenhoff H, Lombard F et al (1996) Asymptotics for the SIMEX estimator in nonlinear measurement error models. J Am Stat Assoc 91:242–250

    Article  Google Scholar 

  • Chanock S, Manolio T, Boehnke M et al (2007) Replicating genotype–phenotype associations. Nature 447:655–660

    Article  CAS  PubMed  Google Scholar 

  • Charles E (2005) The correction for attenuation due to measurement error: clarifying concepts and creating confidence sets. Psychol Methods 10:206–226

    Article  PubMed  Google Scholar 

  • Cook JR, Stefanski LA (1994) Simulation-extrapolation estimation in parametric measurement error models. J Am Stat Assoc 89:1314–1328

    Article  Google Scholar 

  • Coram MA, Candille SI, Duan Q et al (2015) Leveraging multi-ethnic evidence for mapping complex traits in minority populations: an empirical Bayes approach. Am J Hum Genet 96:740–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coram MA, Fang H, Candille SI et al (2017) Leveraging multi-ethnic evidence for risk assessment of quantitative traits in minority populations. Am J Hum Genet 101:218–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbin LJ, Richmond RC, Wade KH et al (2016) BMI as a modifiable risk factor for type 2 diabetes: refining and understanding causal estimates using Mendelian randomization. Diabetes 65:3002–3007

    Article  CAS  PubMed  Google Scholar 

  • Davey Smith G, Paternoster L, Relton C (2017) When will Mendelian randomization become relevant for clinical practice and public health? JAMA 317:589–591

    Article  PubMed  Google Scholar 

  • Davies NM, Dickson M, Davey Smith G et al (2018) The causal effects of education on health outcomes in the UK Biobank. Nat Hum Behav 2:117–125

    Article  PubMed  PubMed Central  Google Scholar 

  • De Candia TR, Lee SH, Yang J et al (2013) Additive genetic variation in schizophrenia risk is shared by populations of African and European descent. Am J Hum Genet 93:463–470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De La Vega FM, Bustamante CD (2018) Polygenic risk scores: a biased prediction? Genome Med 10:100

    Article  Google Scholar 

  • Ding M, Huang T, Bergholdt HK et al (2017) Dairy consumption, systolic blood pressure, and risk of hypertension: Mendelian randomization study. BMJ 356:j1000

    Article  PubMed  PubMed Central  Google Scholar 

  • Disney-Hogg L, Cornish AJ, Sud A et al (2018) Impact of atopy on risk of glioma: a Mendelian randomisation study. BMC Med 16:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dudbridge F (2013) Power and predictive accuracy of polygenic risk scores. PLoS Genet 9:e1003348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efron B, Tibshirani RJ (1994) An introduction to the bootstrap. CRC Press

    Book  Google Scholar 

  • Galinsky KJ, Reshef YA, Finucane HK et al (2019) Estimating cross-population genetic correlations of causal effect sizes. Genet Epidemiol 43:180–188

    Article  PubMed  Google Scholar 

  • Gallagher MD, Chen-Plotkin AS (2018) The post-GWAS era: from association to function. Am J Hum Genet 102:717–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenland S (2000) An introduction to instrumental variables for epidemiologists. Int J Epidemiol 29:722–729

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Wu Y, Zhu Z et al (2018) Global genetic differentiation of complex traits shaped by natural selection in humans. Nat Commun 9:1865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo J, Bakshi A, Wang Y et al (2021) Quantifying genetic heterogeneity between continental populations for human height and body mass index. Sci Rep 11:1–9

    CAS  Google Scholar 

  • Guolo A (2008) Robust techniques for measurement error correction: a review. Stat Methods Med Res 17:555–580

    Article  PubMed  Google Scholar 

  • Gurdasani D, Barroso I, Zeggini E et al (2019) Genomics of disease risk in globally diverse populations. Nat Rev Genet 20:520–535

    Article  CAS  PubMed  Google Scholar 

  • Ikeda M, Takahashi A, Kamatani Y et al (2018) A genome-wide association study identifies two novel susceptibility loci and trans population polygenicity associated with bipolar disorder. Mol Psychiatry 23:639–647

    Article  CAS  PubMed  Google Scholar 

  • Ishigaki K, Akiyama M, Kanai M et al (2020) Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases. Nat Genet 52:669–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khera AV, Chaffin M, Aragam KG et al (2018) Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet 50:1219–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein RJ, Xu X, Mukherjee S et al (2010) Successes of genome-wide association studies. Cell 142:350–351

    Article  CAS  PubMed  Google Scholar 

  • Kraft P (2008) Curses—winner’s and otherwise—in genetic epidemiology. Epidemiology 19:649–651

    Article  PubMed  Google Scholar 

  • Krapohl E, Patel H, Newhouse S et al (2018) Multi-polygenic score approach to trait prediction. Mol Psychiatry 23:1368–1374

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Yang J, Goddard ME et al (2012) Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. Bioinformatics 28:2540–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis CM, Vassos E (2017) Prospects for using risk scores in polygenic medicine. Genome Med 9:96

    Article  PubMed  PubMed Central  Google Scholar 

  • Li YR, Keating BJ (2014) Trans-ethnic genome-wide association studies: advantages and challenges of mapping in diverse populations. Genome Med 6:91

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu JZ, van Sommeren S, Huang H et al (2015) Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet 47:979–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lockwood J, McCaffrey DF (2017) Simulation-extrapolation with latent heteroskedastic error variance. Psychometrika 82:717–736

    Article  Google Scholar 

  • MacKinnon DP, Krull JL, Lockwood CM (2000) Equivalence of the mediation, confounding and suppression effect. Prev Sci 1:173–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Márquez-Luna C, Loh P-R, Consortium SATD et al (2017) Multiethnic polygenic risk scores improve risk prediction in diverse populations. Genet Epidemiol 41:811–823

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin AR, Gignoux CR, Walters RK et al (2017) Human demographic history impacts genetic risk prediction across diverse populations. Am J Hum Genet 100:635–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin AR, Kanai M, Kamatani Y et al (2019) Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet 51:584–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMahon A, Malangone C, Suveges D et al (2019) The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 47:D1005–D1012

    Article  PubMed  CAS  Google Scholar 

  • Morris AP (2011) Transethnic meta-analysis of genomewide association studies. Genet Epidemiol 35:809–822

    Article  PubMed  PubMed Central  Google Scholar 

  • Okada Y, Wu D, Trynka G et al (2014) Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506:376–381

    Article  CAS  PubMed  Google Scholar 

  • Paré G, Mao S, Deng WQ (2018) A robust method to estimate regional polygenic correlation under misspecified linkage disequilibrium structure. Genet Epidemiol 42:636–647

    Article  PubMed  Google Scholar 

  • Power RA, Steinberg S, Bjornsdottir G et al (2015) Polygenic risk scores for schizophrenia and bipolar disorder predict creativity. Nat Neurosci 18:953–955

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Przeworski M (2001) Linkage disequilibrium in humans: models and data. Am J Hum Genet 69:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi T, Wu Y, Zeng J et al (2018) Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood. Nat Commun 9:2282–2282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Race E, Group GW (2005) The use of racial, ethnic, and ancestral categories in human genetics research. Am J Hum Genet 77:519–532

    Article  Google Scholar 

  • Robinson MR, Hemani G, Medina-Gomez C et al (2015) Population genetic differentiation of height and body mass index across Europe. Nat Genet 47:1357–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson PC, Choi HK, Do R et al (2016) Insight into rheumatological cause and effect through the use of Mendelian randomization. Nat Rev Rheumatol 12:486–496

    Article  PubMed  Google Scholar 

  • Rosenberg NA, Huang L, Jewett EM et al (2010) Genome-wide association studies in diverse populations. Nat Rev Genet 11:356–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoech AP, Jordan DM, Loh P-R et al (2019) Quantification of frequency-dependent genetic architectures in 25 UK Biobank traits reveals action of negative selection. Nat Commun 10:790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Kichaev G, Pasaniuc B (2016) Contrasting the genetic architecture of 30 complex traits from summary association data. Am J Hum Genet 99:139–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Mancuso N, Spendlove S et al (2017) Local genetic correlation gives insights into the shared genetic architecture of complex traits. Am J Hum Genet 101:737–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiller W, Davies NM, Palmer TM (2019) Software application profile: mrrobust—a tool for performing two-sample summary Mendelian randomization analyses. Int J Epidemiol 48:684

    Article  Google Scholar 

  • Spracklen CN, Chen P, Kim YJ et al (2017) Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels. Hum Mol Genet 26:1770–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spracklen CN, Horikoshi M, Kim YJ et al (2020) Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature 582:240–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanski LA, Cook JR (1995) Simulation-extrapolation: the measurement error jackknife. J Am Stat Assoc 90:1247–1256

    Article  Google Scholar 

  • Tam V, Patel N, Turcotte M et al (2019) Benefits and limitations of genome-wide association studies. Nat Rev Genet 20:467–484

    Article  CAS  PubMed  Google Scholar 

  • Teo Y-Y, Small KS, Kwiatkowski DP (2010) Methodological challenges of genome-wide association analysis in Africa. Nat Rev Genet 11:149–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The 1000 Genomes Project Consortium (2015) A global reference for human genetic variation. Nature 526:68–74

    Article  CAS  Google Scholar 

  • The Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature 447:661–678

    Article  PubMed Central  CAS  Google Scholar 

  • van Rheenen W, Peyrot WJ, Schork AJ et al (2019) Genetic correlations of polygenic disease traits: from theory to practice. Nat Rev Genet 20:567–581

    Article  PubMed  CAS  Google Scholar 

  • van’t Hof FNG, Vaucher J, Holmes MV et al (2017) Genetic variants associated with type 2 diabetes and adiposity and risk of intracranial and abdominal aortic aneurysms. Eur J Hum Genet 25:758–762

    Article  CAS  Google Scholar 

  • Veturi Y, de los Campos G, Yi N et al (2019) Modeling heterogeneity in the genetic architecture of ethnically diverse groups using random effect interaction models. Genetics 211:1395–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visscher PM, Wray NR, Zhang Q et al (2017) 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet 101:5–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voight BF, Peloso GM, Orho-Melander M et al (2012) Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet 380:572–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuckovic D, Bao EL, Akbari P et al (2020) The polygenic and monogenic basis of blood traits and diseases. Cell 182:1214-1231.e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wall JD, Pritchard JK (2003) Haplotype blocks and linkage disequilibrium in the human genome. Nat Rev Genet 4:587–597

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhang F, Zeng J et al (2019) Genotype-by-environment interactions inferred from genetic effects on phenotypic variability in the UK Biobank. Sci Adv 5:eaaw3538

    Article  PubMed  PubMed Central  Google Scholar 

  • Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of genome-wide association scans. Bioinformatics 26:2190–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wojcik GL, Graff M, Nishimura KK et al (2019) Genetic analyses of diverse populations improves discovery for complex traits. Nature 570:514–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Wang T, Chen Y et al (2020a) Alcohol drinking and amyotrophic lateral sclerosis: an instrumental variable causal inference. Ann Neurol 88:195–198

    Article  PubMed  Google Scholar 

  • Yu X, Yuan Z, Lu H et al (2020b) Relationship between birth weight and chronic kidney disease: evidence from systematics review and two-sample Mendelian randomization analysis. Hum Mol Genet 29:2261–2274

    Article  CAS  PubMed  Google Scholar 

  • Zaitlen N, Paşaniuc B, Gur T et al (2010) Leveraging genetic variability across populations for the identification of causal variants. Am J Hum Genet 86:23–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng P, Zhou X (2019) Causal effects of blood lipids on amyotrophic lateral sclerosis: a Mendelian randomization study. Hum Mol Genet 28:688–697

    Article  CAS  PubMed  Google Scholar 

  • Zeng J, De Vlaming R, Wu Y et al (2018) Signatures of negative selection in the genetic architecture of human complex traits. Nat Genet 50:746–753

    Article  CAS  PubMed  Google Scholar 

  • Zeng P, Wang T, Zheng J et al (2019) Causal association of type 2 diabetes with amyotrophic lateral sclerosis: new evidence from Mendelian randomization using GWAS summary statistics. BMC Med 17:225

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Rice M, Tworoger SS et al (2018) Addition of a polygenic risk score, mammographic density, and endogenous hormones to existing breast cancer risk prediction models: a nested case–control study. PLoS Med 15:e1002644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu Z, Zhang F, Hu H et al (2016) Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet 48:481–487

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Zheng Z, Zhang F et al (2018) Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat Commun 9:224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zollner S, Pritchard J (2007) Overcoming the winner’s curse: estimating penetrance parameters from case-control. Am J Hum Genet 80:605–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the GWAS consortia for making summary statistics publicly available for us and are grateful to all the investigators and participants contributed to those studies. The data analyses in the present study were carried out with the high-performance computing cluster that was supported by the special central finance project of local universities for Xuzhou Medical University. We are especially grateful to two anonymous referees for making a lot of constructive comments that have led to substantial improvements of our manuscript.

Funding

The research of Ping Zeng was supported in part by the Youth Foundation of Humanity and Social Science funded by Ministry of Education of China (18YJC910002), the Natural Science Foundation of Jiangsu Province of China (BK20181472), the China Postdoctoral Science Foundation (2018M630607 and 2019T120465), the QingLan Research Project of Jiangsu Province for Outstanding Young Teachers, the Six-Talent Peaks Project in Jiangsu Province of China (WSN-087), the Training Project for Youth Teams of Science and Technology Innovation at Xuzhou Medical University (TD202008), the Postdoctoral Science Foundation of Xuzhou Medical University, the National Natural Science Foundation of China (81402765), and the Statistical Science Research Project from National Bureau of Statistics of China (2014LY112). The research of Shuiping Huang was supported in part by the Social Development Project of Xuzhou City (KC19017). The research of Ting Wang was supported in part by the Social Development Project of Xuzhou City (KC20062).

Author information

Authors and Affiliations

Authors

Contributions

PZ conceived the idea for the study. PZ, TW, and SH obtained and cleared the datasets; PZ, HL, TW, JZ, and SZ performed the data analyses. PZ, HL, and TW interpreted the results of the data analyses. PZ and HL wrote the manuscript with the help from other authors.

Corresponding author

Correspondence to Ping Zeng.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Consent for publication

All the authors agreed that this manuscript be submitted to the journal of Human Genetics for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5147 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Wang, T., Zhang, J. et al. Evaluating marginal genetic correlation of associated loci for complex diseases and traits between European and East Asian populations. Hum Genet 140, 1285–1297 (2021). https://doi.org/10.1007/s00439-021-02299-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-021-02299-8

Navigation