Ballif BC, Yu W, Shaw CA et al (2003) Monosomy 1p36 breakpoint junctions suggest pre-meiotic breakage-fusion-bridge cycles are involved in generating terminal deletions. Hum Mol Genet 12:2153–2165. https://doi.org/10.1093/hmg/ddg231
CAS
Article
PubMed
Google Scholar
Bonaglia MC, Giorda R, Massagli A et al (2008) A familial inverted duplication/deletion of 2p25.1–25.3 provides new clues on the genesis of inverted duplications. Eur J Hum Genet 17:179–186. https://doi.org/10.1038/ejhg.2008.160
CAS
Article
PubMed
PubMed Central
Google Scholar
Chabchoub E, Rodriguez L, Galan E et al (2007) Molecular characterisation of a mosaicism with a complex chromosome rearrangement: evidence for coincident chromosome healing by telomere capture and neo-telomere formation. J Med Genet 44:250–256. https://doi.org/10.1136/jmg.2006.045476
CAS
Article
PubMed
Google Scholar
Fan X, Abbott TE, Larson D, Chen K (2014) BreakDancer: Identification of genomic structural variation from paired-end read mapping. Curr Protoc Bioinformatics 45:15.6.1–11. https://doi.org/10.1002/0471250953.bi1506s45
Article
Google Scholar
García-Santiago FA, Martínez-Glez V, Santos F et al (2015) Analysis of invdupdel(8p) rearrangement: clinical, cytogenetic and molecular characterization. Am J Med Genet 167A:1018–1025. https://doi.org/10.1002/ajmg.a.36879
Article
PubMed
Google Scholar
Giglio S, Broman KW, Matsumoto N et al (2001) Olfactory receptor-gene clusters, genomic-inversion polymorphisms, and common chromosome rearrangements. Am J Hum Genet 68:874–883. https://doi.org/10.1086/319506
CAS
Article
PubMed
PubMed Central
Google Scholar
Hermetz KE, Newman S, Conneely KN et al (2014) Large inverted duplications in the human genome form via a fold-back mechanism. PLoS Genet 10:e1004139–e1004214. https://doi.org/10.1371/journal.pgen.1004139
CAS
Article
PubMed
PubMed Central
Google Scholar
Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595. https://doi.org/10.1093/bioinformatics/btp698
CAS
Article
PubMed
PubMed Central
Google Scholar
Lopes M, Foiani M, Sogo JM (2006) Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21:15–27. https://doi.org/10.1016/j.molcel.2005.11.015
CAS
Article
PubMed
Google Scholar
Noe L, Kucherov G (2005) YASS: enhancing the sensitivity of DNA similarity search. Nucleic Acids Res 33:W540–W543. https://doi.org/10.1093/nar/gki478
CAS
Article
PubMed
PubMed Central
Google Scholar
Pedurupillay CRJ, Misceo D, Gamage TH et al (2014) Post-zygotic breakage of a dicentric chromosome results in mosaicism for a telocentric 9p marker chromosome in a boy with developmental delay. Gene 533:403–410. https://doi.org/10.1016/j.gene.2013.09.090
CAS
Article
PubMed
Google Scholar
Rowe LR, Lee J-Y, Rector L et al (2009) U-type exchange is the most frequent mechanism for inverted duplication with terminal deletion rearrangements. J Med Genet 46:694–702. https://doi.org/10.1136/jmg.2008.065052
CAS
Article
PubMed
Google Scholar
Schlade-Bartusiak K, Tucker T, Safavi H et al (2013) Independent post-zygotic breaks of a dicentric chromosome result in mosaicism for an inverted duplication deletion 9p and terminal deletion 9p. Eur J Med Genet 56:229–235. https://doi.org/10.1016/j.ejmg.2013.01.013
Article
PubMed
Google Scholar
Shimokawa O, Kurosawa K, Ida T et al (2004) Molecular characterization of inv dup del(8p): analysis of five cases. Am J Med Genet 128A:133–137. https://doi.org/10.1002/ajmg.a.30063
Article
PubMed
Google Scholar
Soler A, Sánchez A, Carrió A et al (2003) Fetoplacental discrepancy involving structural abnormalities of chromosome 8 detected by prenatal diagnosis. Prenat Diagn 23:319–322. https://doi.org/10.1002/pd.590
Article
PubMed
Google Scholar
Stimpson KM, Song IY, Jauch A et al (2010) Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes. PLoS Genet 6:e1001061–e1001119. https://doi.org/10.1371/journal.pgen.1001061
CAS
Article
PubMed
PubMed Central
Google Scholar
Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192. https://doi.org/10.1093/bib/bbs017
CAS
Article
PubMed
Google Scholar
Weckselblatt B, Rudd MK (2015) Human structural variation: mechanisms of chromosome rearrangements. Trends Genet. https://doi.org/10.1016/j.tig.2015.05.010
Article
PubMed
PubMed Central
Google Scholar
Yu S, Graf WD (2010) Telomere capture as a frequent mechanism for stabilization of the terminal chromosomal deletion associated with inverted duplication. Cytogenet Genome Res 129:265–274. https://doi.org/10.1159/000315887
CAS
Article
PubMed
Google Scholar
Yu S, Fiedler S, Stegner A, Graf WD (2010) Genomic profile of copy number variants on the short arm of human chromosome 8. Eur J Hum Genet 18:1114–1120. https://doi.org/10.1038/ejhg.2010.66
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang F, Carvalho CMB, Lupski JR (2009a) Complex human chromosomal and genomic rearrangements. Trends Genet 25:298–307. https://doi.org/10.1016/j.tig.2009.05.005
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang F, Khajavi M, Connolly AM et al (2009b) The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans. Nat Genet 41:849–853. https://doi.org/10.1038/ng.399
CAS
Article
PubMed
PubMed Central
Google Scholar
Zuffardi O, Bonaglia M, Ciccone R, Giorda R (2009) Inverted duplications deletions: underdiagnosed rearrangements?? Clin Genet 75:505–513. https://doi.org/10.1111/j.1399-0004.2009.01187.x
CAS
Article
PubMed
Google Scholar