Advertisement

Human Genetics

, Volume 138, Issue 4, pp 411–423 | Cite as

Genetic kinship and admixture in Iron Age Scytho-Siberians

  • Laura Mary
  • Vincent Zvénigorosky
  • Alexey Kovalev
  • Angéla Gonzalez
  • Jean-Luc Fausser
  • Florence Jagorel
  • Marina Kilunovskaya
  • Vladimir Semenov
  • Eric Crubézy
  • Bertrand Ludes
  • Christine KeyserEmail author
Original Investigation

Abstract

Scythians are known from written sources as horse-riding nomadic peoples who dominated the Eurasian steppe throughout the Iron Age. However, their origins and the exact nature of their social organization remain debated. Three hypotheses prevail regarding their origins that can be summarized as a “western origin”, an “eastern origin” and a “multi-regional origin”. In this work, we first aimed to address the question of the familial and social organization of some Scythian groups (Scytho-Siberians) by testing genetic kinship and, second, to add new elements on their origins through phylogeographical analyses. Twenty-eight Scythian individuals from 5 archeological sites in the Tuva Republic (Russia) were analyzed using autosomal Short Tandem Repeats (STR), Y-STR and Y-SNP typing as well as whole mitochondrial (mtDNA) genome sequencing. Familial relationships were assessed using the Likelihood Ratio (LR) method. Thirteen of the 28 individuals tested were linked by first-degree relationships. When related, the individuals were buried together, except for one adult woman, buried separately from her mother and young sister. Y-chromosome analysis revealed a burial pattern linked to paternal lineages, with men bearing closely related Y-haplotypes buried on the same sites. Inversely, various mtDNA lineages can be found on each site. Y-chromosomal and mtDNA haplogroups were almost equally distributed between Western and Eastern Eurasian haplogroups. These results suggest that Siberian Scythians were organized in patrilocal and patrilineal societies with burial practices linked to both kinship and paternal lineages. It also appears that the group analyzed shared a greater genetic link with Asian populations than Western Scythians did.

Notes

Funding

This study was founded by Groupe Pasteur Mutualité and the Institut de la Transfusion Sanguine (INTS), Paris (15ème).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

439_2019_2002_MOESM1_ESM.tif (7.3 mb)
Supplementary material 1 (TIF 7470 KB)
439_2019_2002_MOESM2_ESM.xlsx (125 kb)
Supplementary material 2 (XLSX 124 KB)

References

  1. Allentoft ME, Sikora M, Sjögren K-G et al (2015) Population genomics of Bronze Age Eurasia. Nature 522:167–172.  https://doi.org/10.1038/nature14507 CrossRefGoogle Scholar
  2. Amory S, Keyser C, Crubézy E, Ludes B (2007) STR typing of ancient DNA extracted from hair shafts of Siberian mummies. Forensic Sci Int 166:218–229.  https://doi.org/10.1016/j.forsciint.2006.05.042 CrossRefGoogle Scholar
  3. Bashilov VA, Yablonsky LT (2001) Some current problems concerning the history of Early Iron Age Eurasian Steppe nomadic societies. In: Davis-Kimball J, Murphy EM, Koryakova L, Yablonsky T (eds) Kurgans, ritual sites, and settlements: Eurasian Bronze and Iron Age. British Archaeological Reports, Archaeopress, Oxford, pp 9–12Google Scholar
  4. Bollongino R, Nehlich O, Richards MP et al (2013) 2000 years of parallel societies in Stone Age Central Europe. Science 342(6157):479–481.  https://doi.org/10.1126/science.1245049 CrossRefGoogle Scholar
  5. Brotherton P, Haak W, Templeton J et al (2013) Neolithic mitochondrial haplogroup H genomes and the genetic origins of Europeans. Nat Commun 4:1764.  https://doi.org/10.1038/ncomms2656 CrossRefGoogle Scholar
  6. Chaix R, Quintana-Murci L, Hegay T et al (2007) From social to genetic structures in central Asia. Curr Biol 17(1):43–48.  https://doi.org/10.1016/j.cub.2006.10.058 CrossRefGoogle Scholar
  7. Clisson I, Keyser C, Francfort HP et al (2002) Genetic analysis of human remains from a double inhumation in a frozen kurgan in Kazakhstan (Berel site, Early 3rd Century BC). Int J Legal Med 116:304–308.  https://doi.org/10.1007/s00414-002-0295-x Google Scholar
  8. Cui Y, Li H, Ning C et al (2013) Y Chromosome analysis of prehistoric human populations in the West Liao River Valley, Northeast China. BMC Evol Biol 13:216.  https://doi.org/10.1186/1471-2148-13-216 CrossRefGoogle Scholar
  9. Damgaard P, de B, Marchi, Rasmussen N S, et al (2018) 137 ancient human genomes from across the Eurasian steppes. Nature 557:369–374.  https://doi.org/10.1038/s41586-018-0094-2 CrossRefGoogle Scholar
  10. Davis-Kimball J, Murphy EE, Koryakova L, Yablonsky LT (2001) Kurgans, ritual sites, and settlements: the Eurasian Bronze and Iron Age. British Archaeological Reports, Archaeopress, Oxford, pp 1–3Google Scholar
  11. Derenko M, Malyarchuk B, Denisova GA et al (2006) Contrasting patterns of Y-chromosome variation in South Siberian populations from Baikal and Altai-Sayan regions. Hum Genet 118:591–604.  https://doi.org/10.1007/s00439-005-0076-y CrossRefGoogle Scholar
  12. Emery MV, Duggan AT, Murchie TJ et al (2018) Ancient Roman mitochondrial genomes and isotopes reveal relationships and geographic origins at the local and pan-Mediterranean scales. J Archaeol Sci Rep 20:200–209.  https://doi.org/10.1016/j.jasrep.2018.04.036 Google Scholar
  13. Gamba C, Jones ER, Teasdale MD et al (2014) Genome flux and stasis in a five millennium transect of European prehistory. Nat Commun 5:5257.  https://doi.org/10.1038/ncomms6257 CrossRefGoogle Scholar
  14. Gmyrya L (1995) Hun country at the Caspian gate, Caspian Dagestan during epoch of the Great Movement of Peoples Dagestan Publishing, Makhachkala, ISВN 5-297-01099-3 Chaps. 6–8Google Scholar
  15. Grach AD (1980) Drevnie kochevniki v tsentre Azii. Nauka: MoscowGoogle Scholar
  16. Grousset R (1965) L’Empire des Steppes. Attila, Gengis-Khan, Tamerlan. Editions Payot, Paris  Google Scholar
  17. Gryaznov M (1981) Arzhan—tsarskiy kurgan ranneskifskogo vremeni. Nauka: MoscowGoogle Scholar
  18. Haak W, Lazaridis I, Patterson N et al (2015) Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522:207–211.  https://doi.org/10.1038/nature14317 CrossRefGoogle Scholar
  19. Harder M, Renneberg R, Meyer P et al (2012) STR-typing of ancient skeletal remains: which multiplex-PCR kit is the best? Croat Med J 53:416–422.  https://doi.org/10.3325/cmj.2012.53.416 CrossRefGoogle Scholar
  20. Hollard C, Keyser C, Giscard P-H et al (2014) Strong genetic admixture in the Altai at the Middle Bronze Age revealed by uniparental and ancestry informative markers. Forensic Sci Int Genet 12:199–207.  https://doi.org/10.1016/j.fsigen.2014.05.012 CrossRefGoogle Scholar
  21. Hollard C, Zvénigorosky V, Kovalev A et al (2018) New genetic evidence of affinities and discontinuities between bronze age Siberian populations. Am J Phys Anthropol.  https://doi.org/10.1002/ajpa.23607 Google Scholar
  22. Ilumäe A-M, Reidla M, Chukhryaeva M et al (2016) Human Y chromosome haplogroup N: a non-trivial time-resolved phylogeography that cuts across language families. Am J Hum Genet 99:163–173.  https://doi.org/10.1016/j.ajhg.2016.05.025 CrossRefGoogle Scholar
  23. Juras A, Krzewińska M, Nikitin AG et al (2017) Diverse origin of mitochondrial lineages in Iron Age Black Sea Scythians. Sci Rep 7:43950.  https://doi.org/10.1038/srep43950 CrossRefGoogle Scholar
  24. Kalinowski ST, Wagner AP, Taper ML (2006) ml-relate: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579.  https://doi.org/10.1111/j.1471-8286.2006.01256.x CrossRefGoogle Scholar
  25. Keyser C, Bouakaze C, Crubézy E et al (2009) Ancient DNA provides new insights into the history of south Siberian Kurgan people. Hum Genet 126:395–410.  https://doi.org/10.1007/s00439-009-0683-0 CrossRefGoogle Scholar
  26. Kim K, Brenner CH, Mair VH et al (2010) A western Eurasian male is found in 2000-year-old elite Xiongnu cemetery in Northeast Mongolia. Am J Phys Anthropol 142:429–440.  https://doi.org/10.1002/ajpa.21242 CrossRefGoogle Scholar
  27. Kling D, Tillmar AO, Egeland T (2014) Familias 3—extensions and new functionality. Forensic Sci Int Genet 13:121–127.  https://doi.org/10.1016/j.fsigen.2014.07.004 CrossRefGoogle Scholar
  28. Krzewińska M, Kılınç GM, Juras A et al (2018) Ancient genomes suggest the eastern Pontic-Caspian steppe as the source of western Iron Age nomads. Sci Adv 4:eaat4457.  https://doi.org/10.1126/sciadv.aat4457 CrossRefGoogle Scholar
  29. Li C, Li H, Cui Y et al (2010) Evidence that a west–east admixed population lived in the Tarim Basin as early as the early Bronze Age. BMC Biol 8:15.  https://doi.org/10.1186/1741-7007-8-15 CrossRefGoogle Scholar
  30. Li H, Zhao X, Zhao Y et al (2011) Genetic characteristics and migration history of a bronze culture population in the West Liao-River valley revealed by ancient DNA. J Hum Genet 56:815–822.  https://doi.org/10.1038/jhg.2011.102 CrossRefGoogle Scholar
  31. Lipson M, Szécsényi-Nagy A, Mallick S et al (2017) Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551:368–372.  https://doi.org/10.1038/nature24476 CrossRefGoogle Scholar
  32. Mathieson I, Lazaridis I, Rohland N et al (2015) Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528:499–503.  https://doi.org/10.1038/nature16152 CrossRefGoogle Scholar
  33. Matisoo-Smith E, Gosling AL, Platt D et al (2018) Ancient mitogenomes of Phoenicians from Sardinia and Lebanon: a story of settlement, integration, and female mobility. Plos One.  https://doi.org/10.1371/journal.pone.0190169 Google Scholar
  34. Mendisco F, Keyser C, Hollard C et al (2011) Application of the iPLEXTM Gold SNP genotyping method for the analysis of Amerindian ancient DNA samples: benefits for ancient population studies. Electrophoresis 32:386–393.  https://doi.org/10.1002/elps.201000483 CrossRefGoogle Scholar
  35. Mittnik A, Wang C-C, Pfrengle S et al (2018) The genetic prehistory of the Baltic Sea region. Nat Commun 9:442.  https://doi.org/10.1038/s41467-018-02825-9 CrossRefGoogle Scholar
  36. Nepararaczki E, Kocsy K, Toth GE et al (2017) Revising mtDNA haplotypes of the ancient Hungarian conquerors with next generation sequencing. PLoS One.  https://doi.org/10.1371/journal.pone.0174886 Google Scholar
  37. Nikitin AG, Ivanova S, Kiosak D et al (2017) Subdivisions of haplogroups U and C encompass mitochondrial DNA lineages of Eneolithic-Early Bronze Age Kurgan populations of western North Pontic steppe. J Hum Genet 62:605–613.  https://doi.org/10.1038/jhg.2017.12 CrossRefGoogle Scholar
  38. Ning C, Gao S, Deng B et al (2015) Ancient mitochondrial genome reveals trace of prehistoric migration in the east Pamir by pastoralists. J Hum Genet 61(2):103–108.  https://doi.org/10.1038/jhg.2015.128 CrossRefGoogle Scholar
  39. Olalde I, Brace S, Allentoft ME et al (2018) The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555:190–196.  https://doi.org/10.1038/nature25738 CrossRefGoogle Scholar
  40. Olivieri A, Sidore C, Achilli A, Angius A, Posth C, Furtwängler A, Brandini S, Capodiferro MR, Gandini F, Zoledziewska M, Pitzalis M, Maschio A, Busonero F, Lai L, Skeates R, Gradoli MG, Beckett J, Marongiu M, Mazzarello V, Marongiu P, Rubino S, Rito T, Macaulay V, Semino O, Pala M, Abecasis GR, Schlessinger D, Conde-Sousa E, Soares P, Richards MB, Cucca FÂ, Torroni A (2017) Mitogenome Diversity in Sardinians: A Genetic Window onto an Island's Past. Mol Bio Evol 34(5):1230–1239CrossRefGoogle Scholar
  41. Pamjav H, Fehér T, Németh E, Pádár Z (2012) Brief communication: new Y-chromosome binary markers improve phylogenetic resolution within haplogroup R1a1. Am J Phys Anthropol 149:611–615.  https://doi.org/10.1002/ajpa.22167 CrossRefGoogle Scholar
  42. Pilipenko A, Trapezov R, V Polosmak N (2015) A paleogenetic study of Pazyryk people buried at Ak-Alakha-1, the Altai Mountains. Archaeol Ethnol Anthropol Eurasia Russ Lang 43:144–150.  https://doi.org/10.17746/1563-0102.2015.43.4.144-150 CrossRefGoogle Scholar
  43. Regueiro M, Alvarez J, Rowold D et al (2013) On the origins, rapid expansion and genetic diversity of Native Americans from hunting-gatherer to agriculturalits. Am J Phys Anthropol 150:333–348.  https://doi.org/10.1002/ajpa.22207 CrossRefGoogle Scholar
  44. Ricaut F-X, Keyser-Tracqui C, Cammaert L et al (2004a) Genetic analysis and ethnic affinities from two Scytho-Siberian skeletons. Am J Phys Anthropol 123:351–360.  https://doi.org/10.1002/ajpa.10323 CrossRefGoogle Scholar
  45. Ricaut FX, Keyser-Tracqui C, Bourgeois J et al (2004b) Genetic analysis of a Scytho-Siberian skeleton and its implications for ancient Central Asian migrations. Hum Biol 76:109–125CrossRefGoogle Scholar
  46. Schuenemann VJ, Bos K, DeWitte S et al (2011) Targeted enrichment of ancient pathogens yielding the pPCP1 plasmid of Yersinia pestis from victims of the Black Death. PNAS 108(38):E746–E752.  https://doi.org/10.1073/pnas.1105107108 CrossRefGoogle Scholar
  47. Shi H, Qi X, Zhong H et al (2013) Genetic evidence of an East Asian origin and paleolithic northward migration of Y-chromosome haplogroup N. PloS One 8:e66102.  https://doi.org/10.1371/journal.pone.0066102 CrossRefGoogle Scholar
  48. Unterländer M, Palstra F, Lazaridis I et al (2017) Ancestry and demography and descendants of Iron Age nomads of the Eurasian Steppe. Nat Commun 8:14615.  https://doi.org/10.1038/ncomms14615 CrossRefGoogle Scholar
  49. Vai S, Brunelli A, Modi A et al (2019) A genetic perspective on Longobard-Era migrations. Eur J Hum Genet.  https://doi.org/10.1038/s41431-018-0319-8 Google Scholar
  50. Wai KT, Barash M, Gunn P (2018) Performance of the early access AmpliSeqTM mitochondrial panel with degraded DNA samples using the Ion TorrentTM platform. Electrophoresis.  https://doi.org/10.1002/elps.201700371 Google Scholar
  51. Weissensteiner H, Pacher D, Kloss-Brandstätter A et al (2016) HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res 44:W58–W63.  https://doi.org/10.1093/nar/gkw233 CrossRefGoogle Scholar
  52. Yablonsky LT (2001) “Scythian Triad” and “Scythian World”. In: Davis-Kimball J, Murphy EM, Koryakova L, Yablonsky T (eds) Kurgans, ritual sites, and settlements: Eurasian Bronze and Iron Age. British Archaeological Reports, Archaeopress, Oxford, pp 3–7Google Scholar
  53. Zaitseva G, Bokovenko N, Alekseev A et al (2005) Evraziya v skifskuyu epokhu: radiouglerodnaya i arkheologicheskaya khronologiyaGoogle Scholar
  54. Zvénigorosky V (2018) Etude des parentés génétiques dans les populations humaines anciennes: estimation de la fiabilité et de l’efficacité des méthodes d’analyse. Thèse, Université Toulouse 3Google Scholar
  55. Zvénigorosky V, Crubézy E, Gibert M et al (2016) The genetics of kinship in remote human groups. Forensic Sci Int Genet 25:52–62.  https://doi.org/10.1016/j.fsigen.2016.07.018 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Laura Mary
    • 1
    • 2
  • Vincent Zvénigorosky
    • 1
    • 3
  • Alexey Kovalev
    • 4
  • Angéla Gonzalez
    • 1
  • Jean-Luc Fausser
    • 1
  • Florence Jagorel
    • 5
  • Marina Kilunovskaya
    • 6
  • Vladimir Semenov
    • 6
  • Eric Crubézy
    • 7
  • Bertrand Ludes
    • 3
    • 5
    • 8
  • Christine Keyser
    • 1
    • 3
    • 5
    Email author
  1. 1.Institut de Médecine LégaleUniversité de StrasbourgStrasbourgFrance
  2. 2.Hôpitaux Universitaires de StrasbourgStrasbourgFrance
  3. 3.CNRS, FRE 2029-BABELUniversité Paris DescartesParisFrance
  4. 4.Institute of ArcheologyRussian Academy of SciencesMoscowRussia
  5. 5.Institut National de la Transfusion SanguineParisFrance
  6. 6.Institute of History of Material CultureRussian Academy of SciencesSaint PetersburgRussia
  7. 7.Laboratoire AMIS, CNRS UMR 5288Université de ToulouseToulouseFrance
  8. 8.Institut Médico-Légal de ParisParisFrance

Personalised recommendations