Skip to main content

Advertisement

Log in

Whole-exome sequencing identifies rare genetic variations in German families with pulmonary sarcoidosis

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Genome-wide and candidate gene studies for pulmonary sarcoidosis have highlighted several candidate variants among different populations. However, the genetic basis of functional rare variants in sarcoidosis still needs to be explored. To identify functional rare variants in sarcoidosis, we sequenced exomes of 22 sarcoidosis cases from six families. Variants were prioritized using linkage and high-penetrance approaches, and filtered to identify novel and rare variants. Functional networking and pathway analysis of identified variants was performed using gene ontology based gene–phenotype, gene–gene, and protein–protein interactions. The linkage (n = 1007–7640) and high-penetrance (n = 11,432) prioritized variants were filtered to select variants with (a) reported allele frequency < 5% in databases (1.2–3.4%) or (b) novel (0.7–2.3%). Further selection based on functional properties and validation revealed a panel of 40 functional rare variants (33 from linkage region, 6 highly penetrant and 1 shared by both approaches). Functional network analysis implicated these gene variants in immune responses, such as regulation of pro-inflammatory cytokines including production of IFN-γ and anti-inflammatory cytokine IL-10, leukocyte proliferation, bacterial defence, and vesicle-mediated transport. The KEGG pathway analysis indicated inflammatory bowel disease as most relevant. This study highlights the subsets of functional rare gene variants involved in pulmonary sarcoidosis, such as, regulations of calcium ions, G-protein-coupled receptor, and immune system including retinoic acid binding. The implicated mechanisms in etiopathogenesis of familial sarcoidosis thus include Wnt signalling, inflammation mediated by chemokine and cytokine signalling and cadherin signalling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ANNOVAR:

Annotate variation

DAVID:

Database for annotation visualization and integrated discovery

dbSNP:

NCBI single nucleotide polymorphism database

EASE score:

Expression analysis systemic explorer score

GeneMANIA:

Gene multiple association network integration algorithm

GO:

Gene ontology

LRR:

Leucine-rich repeats

PANTHER:

Protein annotation through evolutionary relationship

PPI:

Protein–protein interactions

STRING:

Search tool for the retrieval of interacting genes/proteins

WES:

Whole-exome sequencing

References

  • Adams JS, Singer FR, Gacad MA et al (1985) Isolation and structural identification of 1, 25-dihydroxyvitamin D3 produced by cultured alveolar macrophages in sarcoidosis. J Clin Endocrinol Metab 60:960–966

    Article  CAS  Google Scholar 

  • Baba Y, Matsumoto M, Kurosaki T (2014) Calcium signaling in B cells: regulation of cytosolic Ca2+ increase and its sensor molecules, STIM1 and STIM2. Mol Immunol 62:339–343

    Article  CAS  Google Scholar 

  • Baughman RP, Janovcik J, Ray M et al (2013) Calcium and vitamin D metabolism in sarcoidosis. Sarcoidosis Vasc Diffus lung Dis Off J WASOG 30:113–120

    CAS  Google Scholar 

  • Besnard V, Calender A, Bouvry D et al (2018) G908R NOD2 variant in a family with sarcoidosis. Respir Res 19:44

    Article  Google Scholar 

  • Bomba L, Walter K, Soranzo N (2017) The impact of rare and low-frequency genetic variants in common disease. Genome Biol 18:77

    Article  Google Scholar 

  • Bucova M, Suchankova M, Tibenska E et al (2015) TREM-2 receptor expression increases with 25(OH)D vitamin serum levels in patients with pulmonary sarcoidosis. Mediator Inflamm 2015:181986

    Article  Google Scholar 

  • Burke RR, Rybicki BA, Rao DS (2010) Calcium and vitamin D in sarcoidosis: How to assess and manage. Semin Respir Crit Care Med 31:474–484

    Article  Google Scholar 

  • Calender A, Rollat Farnier PA, Buisson A et al (2018) Whole exome sequencing in three families segregating a pediatric case of sarcoidosis. BMC Med Genom 11:23

    Article  Google Scholar 

  • Chopra A, Kalkanis A, Judson MA (2016) Biomarkers in sarcoidosis. Expert Rev Clin Immunol 12:1191–1208

    Article  CAS  Google Scholar 

  • Conron M, Beynon HLC (2000) Ketoconazole for the treatment of refractory hypercalcemic sarcoidosis. Sarcoidosis Vasc Diffus Lung Dis 17:277–280

    CAS  Google Scholar 

  • Eggers S, Smith KR, Bahlo M et al (2015) Whole exome sequencing combined with linkage analysis identifies a novel 3 bp deletion in NR5A1. Eur J Hum Genet 23:486–493

    Article  CAS  Google Scholar 

  • Feske S (2007) Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol 7:690–702

    Article  CAS  Google Scholar 

  • Feske S, Okamura H, Hogan PG, Rao A (2003) Ca2+/calcineurin signalling in cells of the immune system. Biochem Biophys Res Commun 311:1117–1132

    Article  CAS  Google Scholar 

  • Fingerlin TE, Hamzeh N, Maier LA (2015) Genetics of sarcoidosis. Clin Chest Med 36:569–584. https://doi.org/10.1016/j.ccm.2015.08.002

    Article  PubMed  Google Scholar 

  • Fischer A, Nothnagel M, Schürmann M et al (2010) A genome-wide linkage analysis in 181 German sarcoidosis families using clustered biallelic markers. Chest 138:151–157

    Article  Google Scholar 

  • Fischer A, Grunewald J, Spagnolo P et al (2014) Genetics of sarcoidosis. Semin Respir Crit Care Med 35:296–306

    Article  Google Scholar 

  • Fischer A, Ellinghaus D, Nutsua M et al (2015) Identification of immune-relevant factors conferring sarcoidosis genetic risk. Am J Respir Crit Care Med 192:727–736

    Article  CAS  Google Scholar 

  • Fuss M, Pepersack T, Gillet C et al (1992) Calcium and vitamin D metabolism in granulomatous diseases. Clin Rheumatol 11:28–36

    Article  CAS  Google Scholar 

  • Gibson G (2012) Rare and common variants: twenty arguments. Nat Rev Genet 13:135–145

    Article  CAS  Google Scholar 

  • Grunewald J, Spagnolo P, Wahlström J, Eklund A (2015) Immunogenetics of disease-causing inflammation in sarcoidosis. Clin Rev Allergy Immunol 49:19–35

    Article  CAS  Google Scholar 

  • He M, Cornelis MC, Kraft P et al (2010) Genome-wide association study identifies variants at the IL18-BCO2 locus associated with interleukin-18 levels. Arterioscler Thromb Vasc Biol 30:885–890

    Article  CAS  Google Scholar 

  • Hemon P, Renaudineau Y, Debant M et al (2017) Calcium signaling: from normal B cell development to tolerance breakdown and autoimmunity. Clin Rev Allergy Immunol 53:141–165

    Article  CAS  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. https://doi.org/10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  • Kavathia D, Buckley JD, Rao D et al (2010) Elevated 1, 25-dihydroxyvitamin D levels are associated with protracted treatment in sarcoidosis. Respir Med 104:564–570

    Article  Google Scholar 

  • Kishore A, Petrek M (2013) Immunogenetics of sarcoidosis. Int Trends Immun 1:43–53

    CAS  Google Scholar 

  • Kishore A, Žižková V, Kocourková L, Petřek M (2015) A dataset of 26 candidate gene and pro-inflammatory cytokine variants for association studies in idiopathic pulmonary fibrosis: frequency distribution in normal Czech population. Front Immunol 6:476. https://doi.org/10.3389/fimmu.2015.00476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishore A, Navratilova Z, Kolek V et al (2018) Expression analysis of extracellular microRNA in bronchoalveolar lavage fluid from patients with pulmonary sarcoidosis. Respirology. https://doi.org/10.1111/resp.13364

    Article  PubMed  Google Scholar 

  • Krintel SB, Palermo G, Johansen JS et al (2012) Investigation of single nucleotide polymorphisms and biological pathways associated with response to TNFα inhibitors in patients with rheumatoid arthritis. Pharmacogenet Genom 22:577–589

    Article  CAS  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  Google Scholar 

  • Lee S, Abecasis GR, Boehnke M, Lin X (2014) Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet 95:5–23

    Article  CAS  Google Scholar 

  • McKenna A, Hanna M, Banks E et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  Google Scholar 

  • Mi H, Huang X, Muruganujan A et al (2017) PANTHER version 11: expanded annotation data from Gene ontology and reactome pathways, and data analysis tool enhancements. Nucl Acids Res 45:D183–D189

    Article  CAS  Google Scholar 

  • Mirsaeidi M, Gidfar S, Vu A, Schraufnagel D (2016) Annexins family: insights into their functions and potential role in pathogenesis of sarcoidosis. J Transl Med 14:89. https://doi.org/10.1186/s12967-016-0843-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montojo J, Zuberi K, Rodriguez H et al (2014) GeneMANIA: Fast gene network construction and function prediction for Cytoscape. F1000Research 3:153. https://doi.org/10.12688/f1000research.4572.1

    Article  PubMed  PubMed Central  Google Scholar 

  • Muller-Quernheim J, Schurmann M, Hofmann S et al (2008) Genetics of sarcoidosis. Clin Chest Med 29:391–414

    Article  Google Scholar 

  • Oh-hora M, Rao A (2009) The calcium/NFAT pathway: role in development and function of regulatory T cells. Microbes Infect 11:612–619

    Article  CAS  Google Scholar 

  • Ott J, Wang J, Leal SM (2015) Genetic linkage analysis in the age of whole-genome sequencing. Nat Rev Genet 16:275–284

    Article  CAS  Google Scholar 

  • Price AL, Kryukov GV, de Bakker PIW et al (2010) Pooled association tests for rare variants in exon-resequencing studies. Am J Hum Genet 86:832–838

    Article  Google Scholar 

  • Rivera NV, Ronninger M, Shchetynsky K et al (2016) High-density genetic mapping identifies new susceptibility variants in sarcoidosis phenotypes and shows genomic-driven phenotypic differences. Am J Respir Crit Care Med 193:1008–1022

    Article  CAS  Google Scholar 

  • Rybicki BA, Iannuzzi MC, Frederick MM et al (2001) Familial aggregation of sarcoidosis. A case–control etiologic study of sarcoidosis (ACCESS). Am J Respir Crit Care Med 164:2085–2091

    Article  CAS  Google Scholar 

  • Rybicki BA, Sinha R, Iyengar S et al (2007) Genetic linkage analysis of sarcoidosis phenotypes: the sarcoidosis genetic analysis (SAGA) study. Genes Immun 8:379–386

    Article  CAS  Google Scholar 

  • Schork NJ, Murray SS, Frazer KA, Topol EJ (2009) Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev 19:212–219

    Article  CAS  Google Scholar 

  • Seixas S, Ivanova N, Ferreira Z et al (2012) Loss and gain of function in SERPINB11: an example of a gene under selection on standing variation, with implications for host-pathogen interactions. PLoS One 7:e32518

    Article  CAS  Google Scholar 

  • Seto JT, Quinlan KGR, Lek M et al (2013) ACTN3 genotype influences muscle performance through the regulation of calcineurin signaling. J Clin Invest 123:4255–4263

    Article  CAS  Google Scholar 

  • Statement on Sarcoidosis (1999) Joint Statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) adopted by the ATS Board of Directors and by the ERS Executive Committee, Feb. Am J Respir Crit Care Med 160:736–755. https://doi.org/10.1164/ajrccm.160.2.ats4-99

    Article  Google Scholar 

  • Sverrild A, Backer V, Kyvik KO et al (2008) Heredity in sarcoidosis: a registry-based twin study. Thorax 63:894–896

    Article  CAS  Google Scholar 

  • Szklarczyk D, Franceschini A, Wyder S et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucl Acids Res 43:D447–D452

    Article  CAS  Google Scholar 

  • Tebben PJ, Singh RJ, Kumar R (2016) Vitamin D-mediated hypercalcemia: mechanisms, diagnosis, and treatment. Endocr Rev 37:521–547

    Article  CAS  Google Scholar 

  • Valeyre D, Prasse A, Nunes H et al (2014) Sarcoidosis. Lancet 383:1155–1167

    Article  Google Scholar 

  • Wang L, Choi S, Lee S et al (2016) Comparing family-based rare variant association tests for dichotomous phenotypes. BMC Proc 10:181–186. https://doi.org/10.1186/s12919-016-0027-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Wang K (2015) Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat Protoc 10:1556–1566

    Article  CAS  Google Scholar 

  • Yang H, Robinson PN, Wang K (2015) Phenolyzer: phenotype-based prioritization of candidate genes for human diseases. Nat Methods 12:841–843

    Article  CAS  Google Scholar 

  • Yao CK, Lin YQ, Ly CV et al (2009) A synaptic vesicle-associated Ca2+ channel promotes endocytosis and couples exocytosis to endocytosis. Cell 138:947–960

    Article  CAS  Google Scholar 

  • Zhang J, Patel JM (2010) Role of the CX3CL1-CX3CR1 axis in chronic inflammatory lung diseases. Int J Clin Exp Med 3:233–244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zuk O, Schaffner SF, Samocha K et al (2014) Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci 111:E455–E464

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Manfred Schürmann, Institute of Human Genetics, University of Lübeck, for his involvement in the study subject characterisation; Dr. Kumari Neelam, Punjab Agricultural University, Ludhiana, for her helpful suggestions in the manuscript; and to the Sequencing and Genotyping Core Facilities at IKMB for the technical support. The authors were supported by the DFG Cluster of Excellence “Inflammation at Interfaces”, the Deutsche Forschungsgemeinschaft (DFG) Grant EXC 306 (present responsible person: prof. D. Ellinghaus); DFG “Systematic identification and modelling of rare and common genetic risk factors for sarcoidosis” Grant FI 1935/1-1; and the Grants NV18-05-00134, IGA_LF_2018_015 (Czech Republic).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefan Schreiber or Martin Petrek.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2787 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishore, A., Petersen, BS., Nutsua, M. et al. Whole-exome sequencing identifies rare genetic variations in German families with pulmonary sarcoidosis. Hum Genet 137, 705–716 (2018). https://doi.org/10.1007/s00439-018-1915-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-018-1915-y

Navigation