IFT88 mutations identified in individuals with non-syndromic recessive retinal degeneration result in abnormal ciliogenesis

Abstract

Whole genome sequencing (WGS) was performed to identify the variants responsible for inherited retinal degeneration (IRD) in a Caucasian family. Segregation analysis of selected rare variants with pathogenic potential identified a set of compound heterozygous changes p.Arg266*:c.796C>T and p.Ala568Thr:c.1702G>A in the intraflagellar transport protein-88 (IFT88) gene segregating with IRD. Expression of IFT88 with the p.Arg266* and p.Ala568Thr mutations in mIMDC3 cells by transient transfection and in HeLa cells by introducing the mutations using CRISPR-cas9 system suggested that both mutations result in the formation of abnormal ciliary structures. The introduction of the IFT88 p.Arg266* variant in the homozygous state in HeLa cells by CRISPR-Cas9 genome-editing revealed that the mutant transcript undergoes nonsense-mediated decay leading to a significant depletion of IFT88 transcript. Additionally, abnormal ciliogenesis was observed in these cells. These observations suggest that the rare and unique combination of IFT88 alleles observed in this study provide insight into the physiological role of IFT88 in humans and the likely mechanism underlying retinal pathology in the pedigree with IRD.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 7:20. https://doi.org/10.1002/0471142905.hg0720s76

    PubMed  Article  Google Scholar 

  2. Badano JL, Mitsuma N, Beales PL, Katsanis N (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7:125–148. https://doi.org/10.1146/annurev.genom.7.080505.115610

    Article  PubMed  CAS  Google Scholar 

  3. Bhogaraju S, Engel BD, Lorentzen E (2013) Intraflagellar transport complex structure and cargo interactions. Cilia 2:10. https://doi.org/10.1186/2046-2530-2-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bisgrove BW, Yost HJ (2006) The roles of cilia in developmental disorders and disease. Development 133:4131–4143. https://doi.org/10.1242/dev.02595

    Article  PubMed  CAS  Google Scholar 

  5. Biswas P et al (2016) A missense mutation in ASRGL1 is involved in causing autosomal recessive retinal degeneration. Hum Mol Genet 25:2483–2497. https://doi.org/10.1093/hmg/ddw113

    PubMed  CAS  Article  PubMed Central  Google Scholar 

  6. Biswas P et al (2017) A mutation in IFT43 causes non-syndromic recessive retinal degeneration. Hum Mol Genet 26:4741–4751. https://doi.org/10.1093/hmg/ddx356

    Article  PubMed  CAS  Google Scholar 

  7. Boehlke C et al (2015) A cilia independent role of Ift88/polaris during cell migration. PLoS One 10:e0140378. https://doi.org/10.1371/journal.pone.0140378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Branham K et al (2016) Establishing the involvement of the novel gene AGBL5 in retinitis pigmentosa by whole genome sequencing. Phys Genom 48:922–927. https://doi.org/10.1152/physiolgenomics.00101.2016

    Article  CAS  Google Scholar 

  9. Bujakowska KM et al (2015) Mutations in IFT172 cause isolated retinal degeneration and Bardet-Biedl syndrome. Hum Mol Genet 24:230–242. https://doi.org/10.1093/hmg/ddu441

    Article  PubMed  CAS  Google Scholar 

  10. Cardenas-Rodriguez M, Badano JL (2009) Ciliary biology: understanding the cellular and genetic basis of human ciliopathies. Am J Med Genet C Semin Med Genet 151C:263–280. https://doi.org/10.1002/ajmg.c.30227

    Article  PubMed  CAS  Google Scholar 

  11. Chang CF, Serra R (2013) Ift88 regulates Hedgehog signaling, Sfrp5 expression, and beta-catenin activity in post-natal growth plate. J Orthop Res 31:350–356. https://doi.org/10.1002/jor.22237

    Article  PubMed  CAS  Google Scholar 

  12. Delaval B, Bright A, Lawson ND, Doxsey S (2011) The cilia protein IFT88 is required for spindle orientation in mitosis. Nat Cell Biol 13:461–468. https://doi.org/10.1038/ncb2202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Dharmat R et al (2017) IFT81 as a candidate gene for nonsyndromic retinal degeneration invest. Ophthalmol Vis Sci 58:2483–2490. https://doi.org/10.1167/iovs.16-19133

    CAS  Article  Google Scholar 

  14. Doench JG et al (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34:184–191. https://doi.org/10.1038/nbt.3437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Durand S et al (2007) Inhibition of nonsense-mediated mRNA decay (NMD) by a new chemical molecule reveals the dynamic of NMD factors in P-bodies. J Cell Biol 178:1145–1160. https://doi.org/10.1083/jcb.200611086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ferrucci S, Anderson SF, Townsend JC (1998) Retinitis pigmentosa inversa Optom. Vis Sci 75:560–570

    Article  CAS  Google Scholar 

  17. Gustafson K et al (2017) Whole genome sequencing revealed mutations in two independent genes as the underlying cause of retinal degeneration in an Ashkenazi Jewish pedigree. Genes (Basel) 8:210. https://doi.org/10.3390/genes8090210

    Article  CAS  Google Scholar 

  18. Halbert SA, Patton DL, Zarutskie PW, Soules MR (1997) Function and structure of cilia in the fallopian tube of an infertile woman with Kartagener’s syndrome. Hum Reprod 12:55–58

    Article  PubMed  CAS  Google Scholar 

  19. Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809. https://doi.org/10.1016/S0140-6736(06)69740-7

    Article  PubMed  CAS  Google Scholar 

  20. Hsu PD et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832. https://doi.org/10.1038/nbt.2647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hu J, Ng PC (2013) SIFT Indel: predictions for the functional effects of amino acid insertions/deletions in proteins. PLoS One 8:e77940. https://doi.org/10.1371/journal.pone.0077940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Katoh Y, Michisaka S, Nozaki S, Funabashi T, Hirano T, Takei R, Nakayama K (2017) Practical method for targeted disruption of cilia-related genes by using CRISPR/Cas9-mediated, homology-independent knock-in system. Mol Biol Cell 28:898–906. https://doi.org/10.1091/mbc.E17-01-0051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Khanna H (2015) Photoreceptor sensory cilium traversing the ciliary gate. Cells 4:674–686. https://doi.org/10.3390/cells4040674

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kim S, Tsiokas L (2011) Cilia and cell cycle re-entry: more than a coincidence. Cell Cycle 10:2683–2690. https://doi.org/10.4161/cc.10.16.17009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lehman JM, Michaud EJ, Schoeb TR, Aydin-Son Y, Miller M, Yoder BK (2008) The Oak ridge polycystic kidney mouse: modeling ciliopathies of mice and men. Dev Dyn 237:1960–1971. https://doi.org/10.1002/dvdy.21515

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Liu Q, Zhang Q, Pierce EA (2010) Photoreceptor sensory cilia and inherited retinal degeneration. Adv Exp Med Biol 664:223–232. https://doi.org/10.1007/978-1-4419-1399-9_26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Marshall WF, Nonaka S (2006) Cilia: tuning in to the cell’s antenna. Curr Biol 16:R604–R614. https://doi.org/10.1016/j.cub.2006.07.012

    Article  PubMed  CAS  Google Scholar 

  29. McIntyre JC et al (2012) Gene therapy rescues cilia defects and restores olfactory function in a mammalian ciliopathy model. Nat Med 18:1423–1428. https://doi.org/10.1038/nm.2860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Mizuno N, Taschner M, Engel BD, Lorentzen E (2012) Structural studies of ciliary components. J Mol Biol 422:163–180. https://doi.org/10.1016/j.jmb.2012.05.040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Moyer JH et al (1994) Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice. Science 264:1329–1333

    Article  PubMed  CAS  Google Scholar 

  32. Murcia NS, Richards WG, Yoder BK, Mucenski ML, Dunlap JR, Woychik RP (2000) The Oak Ridge Polycystic Kidney (orpk) disease gene is required for left-right axis determination. Development 127:2347–2355

    PubMed  CAS  Google Scholar 

  33. Pazour GJ, Rosenbaum JL (2002) Intraflagellar transport and cilia-dependent diseases. Trends Cell Biol 12:551–555

    Article  PubMed  CAS  Google Scholar 

  34. Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, Cole DG (2000) Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 151:709–718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Pazour GJ et al (2002) The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. J Cell Biol 157:103–113. https://doi.org/10.1083/jcb.200107108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Robert A, Margall-Ducos G, Guidotti JE, Bregerie O, Celati C, Brechot C, Desdouets C (2007) The intraflagellar transport component IFT88/polaris is a centrosomal protein regulating G1-S transition in non-ciliated cells. J Cell Sci 120:628–637. https://doi.org/10.1242/jcs.03366

    Article  PubMed  CAS  Google Scholar 

  37. Rosenbaum J (2002) Intraflagellar transport. Curr Biol 12:R125

    Article  PubMed  CAS  Google Scholar 

  38. Rosenbaum JL, Witman GB (2002) Intraflagellar transport. Nat Rev Mol Cell Biol 3:813–825. https://doi.org/10.1038/nrm952

    Article  PubMed  CAS  Google Scholar 

  39. Sandberg MA, Gaudio AR, Berson EL (2005) Disease course of patients with pericentral retinitis pigmentosa. Am J Ophthalmol 140:100–106. https://doi.org/10.1016/j.ajo.2005.02.038

    Article  PubMed  Google Scholar 

  40. Tian H et al (2017) Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate. Hum Mol Genet 26:860–872. https://doi.org/10.1093/hmg/ddx002

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Waters AM, Beales PL (2011) Ciliopathies: an expanding disease spectrum. Pediatr Nephrol 26:1039–1056. https://doi.org/10.1007/s00467-010-1731-7

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wheway G, Parry DA, Johnson CA (2014) The role of primary cilia in the development and disease of the retina. Organogenesis 10:69–85. https://doi.org/10.4161/org.26710

    Article  PubMed  Google Scholar 

  43. Xu M et al (2015) Mutations in human IFT140 cause non-syndromic retinal degeneration. Hum Genet 134:1069–1078. https://doi.org/10.1007/s00439-015-1586-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Yoder BK (2007) Role of primary cilia in the pathogenesis of polycystic kidney disease. J Am Soc Nephrol 18:1381–1388. https://doi.org/10.1681/ASN.2006111215

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Frans PM Cremers, Department of Human Genetics, Radboud University Nijmegen Medical Center, for screening his collection of IRD patients for mutations in the IFT88 gene.

Funding

The Foundation Fighting Blindness, Research to Prevent Blindness, NIH-EY21237, P30-EY22589. Shyamanga Borooah was funded by a Fulbright-Fight For Sight Scholarship and Global Ophthalmology Awards Program Fellowship award.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Radha Ayyagari.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1731 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chekuri, A., Guru, A.A., Biswas, P. et al. IFT88 mutations identified in individuals with non-syndromic recessive retinal degeneration result in abnormal ciliogenesis. Hum Genet 137, 447–458 (2018). https://doi.org/10.1007/s00439-018-1897-9

Download citation