Human Genetics

, Volume 137, Issue 1, pp 45–53 | Cite as

Pleiotropy of cardiometabolic syndrome with obesity-related anthropometric traits determined using empirically derived kinships from the Busselton Health Study

  • Gemma Cadby
  • Phillip E. Melton
  • Nina S. McCarthy
  • Marcio Almeida
  • Sarah Williams-Blangero
  • Joanne E. Curran
  • John L. VandeBerg
  • Jennie Hui
  • John Beilby
  • A. W. Musk
  • Alan L. James
  • Joseph Hung
  • John Blangero
  • Eric K. Moses
Original Investigation

Abstract

Over two billion adults are overweight or obese and therefore at an increased risk of cardiometabolic syndrome (CMS). Obesity-related anthropometric traits genetically correlated with CMS may provide insight into CMS aetiology. The aim of this study was to utilise an empirically derived genetic relatedness matrix to calculate heritabilities and genetic correlations between CMS and anthropometric traits to determine whether they share genetic risk factors (pleiotropy). We used genome-wide single nucleotide polymorphism (SNP) data on 4671 Busselton Health Study participants. Exploiting both known and unknown relatedness, empirical kinship probabilities were estimated using these SNP data. General linear mixed models implemented in SOLAR were used to estimate narrow-sense heritabilities (h 2) and genetic correlations (r g) between 15 anthropometric and 9 CMS traits. Anthropometric traits were adjusted by body mass index (BMI) to determine whether the observed genetic correlation was independent of obesity. After adjustment for multiple testing, all CMS and anthropometric traits were significantly heritable (h 2 range 0.18–0.57). We identified 50 significant genetic correlations (r g range: − 0.37 to 0.75) between CMS and anthropometric traits. Five genetic correlations remained significant after adjustment for BMI [high density lipoprotein cholesterol (HDL-C) and waist–hip ratio; triglycerides and waist–hip ratio; triglycerides and waist–height ratio; non-HDL-C and waist–height ratio; insulin and iliac skinfold thickness]. This study provides evidence for the presence of potentially pleiotropic genes that affect both anthropometric and CMS traits, independently of obesity.

Notes

Acknowledgements

The authors acknowledge the generous support for the 1994/1995 Busselton Health Study follow-up from Healthway, Western Australia, the numerous Busselton community volunteers who assisted with data collection and the study participants from the Shire of Busselton. The Busselton Health Study is supported by The Great Wine Estates of the Margaret River region of Western Australia. Support from the Royal Perth Hospital Medical Research Foundation is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

GC is supported by the National Health and Medical Research Council (APP1101320).

Supplementary material

439_2017_1856_MOESM1_ESM.xlsx (23 kb)
Supplementary material 1 (XLSX 23 kb)

References

  1. Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198–1211.  https://doi.org/10.1086/301844 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Benyamin B, Sorensen TI, Schousboe K, Fenger M, Visscher PM, Kyvik KO (2007) Are there common genetic and environmental factors behind the endophenotypes associated with the metabolic syndrome? Diabetologia 50:1880–1888.  https://doi.org/10.1007/s00125-007-0758-1 CrossRefPubMedGoogle Scholar
  3. Bouchard C, Bray GA, Hubbard VS (1990) Basic and clinical aspects of regional fat distribution. Am J Clin Nutr 52:946–950CrossRefPubMedGoogle Scholar
  4. Bulik-Sullivan B et al (2015) An atlas of genetic correlations across human diseases and traits. Nat Genet 47:1236–1241CrossRefPubMedPubMedCentralGoogle Scholar
  5. Castro JP, El-Atat FA, McFarlane SI, Aneja A, Sowers JR (2003) Cardiometabolic syndrome: pathophysiology and treatment. Curr Hypertens Rep 5:393–401CrossRefPubMedGoogle Scholar
  6. Core Team R (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  7. Elder SJ et al (2009) Genetic and environmental influences on factors associated with cardiovascular disease and the metabolic syndrome. J Lipid Res 50:1917–1926.  https://doi.org/10.1194/jr.P900033-JLR200 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Elks CE, den Hoed M, Zhao JH, Sharp SJ, Wareham NJ, Loos RJF, Ong KK (2012) Variability in the heritability of body mass index: a systematic review and meta-regression. Front Endocrinol 3:29.  https://doi.org/10.3389/fendo.2012.00029 CrossRefGoogle Scholar
  9. Ford ES, Li C, Zhao G (2010) Prevalence and correlates of metabolic syndrome based on a harmonious definition among adults in the US. J Diabetes 2:180–193.  https://doi.org/10.1111/j.1753-0407.2010.00078.x CrossRefPubMedGoogle Scholar
  10. Gratten J, Visscher PM (2016) Genetic pleiotropy in complex traits and diseases: implications for genomic medicine. Genome Med 8:78.  https://doi.org/10.1186/s13073-016-0332-x CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gregory AT, Armstrong RM, Grassi TD, Gaut B, Van Der Weyden MB (2008) On our selection: Australian longitudinal research studies. Med J Aust 189:650–657.  https://doi.org/10.2196/jmir.3788 PubMedGoogle Scholar
  12. Grundy SM (2008) Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 28:629CrossRefPubMedGoogle Scholar
  13. International Diabetes Federation (2006) The IDF consensus worldwide definition of the metabolic syndrome. Belgium, BrusselsGoogle Scholar
  14. Kelli HM, Kassas I, Lattouf OM (2015) Cardio metabolic syndrome: a global epidemic. J Diabetes Metab 6:2Google Scholar
  15. Kissebah AH, Krakower GR (1994) Regional adiposity and morbidity. Physiol Rev 74:761–811CrossRefPubMedGoogle Scholar
  16. Langenberg C et al (2012) Long-term risk of incident type 2 diabetes and measures of overall and regional obesity: the EPIC-InterAct case-cohort study. PLoS Med 9:e100123.  https://doi.org/10.1371/journal.pmed.1001230 Google Scholar
  17. Lee SH, Yang J, Goddard ME, Visscher PM, Wray NR (2012) Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. Bioinformatics.  https://doi.org/10.1093/bioinformatics/bts474 Google Scholar
  18. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, SunderlandGoogle Scholar
  19. MacCluer JW et al (1999) Genetics of atherosclerosis risk factors in Mexican Americans. Nutr Rev 57:S59–S65CrossRefPubMedGoogle Scholar
  20. Mamtani M et al (2013) Waist circumference independently associates with the risk of insulin resistance and type 2 diabetes in Mexican American families. PLoS ONE 8:e59153.  https://doi.org/10.1371/journal.pone.0059153 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Mamtani M et al (2014) Waist circumference is genetically correlated with incident type 2 diabetes in Mexican-American families. Diabetic Med.  https://doi.org/10.1111/dme.12266 PubMedGoogle Scholar
  22. Nelson TL, Vogler GP, Pedersen NL, Hong Y, Miles TP (2000) Genetic and environmental influences on body fat distribution, fasting insulin levels and CVD: are the influences shared? Twin Res 3:43–50CrossRefPubMedGoogle Scholar
  23. Ng M et al (2013) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study. Lancet 384:766–781.  https://doi.org/10.1016/s0140-6736(14)60460-8 CrossRefGoogle Scholar
  24. Pilia G et al (2006) Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genet 2:e132CrossRefPubMedPubMedCentralGoogle Scholar
  25. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909.  https://doi.org/10.1038/ng1847 CrossRefPubMedGoogle Scholar
  26. Purcell S et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575CrossRefPubMedPubMedCentralGoogle Scholar
  27. Rankinen T, Sarzynski MA, Ghosh S, Bouchard C (2015) Are there genetic paths common to obesity, cardiovascular disease outcomes, and cardiovascular risk factors? Circ Res 116:909–922.  https://doi.org/10.1161/circresaha.116.302888 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Samaras K, Nguyen TV, Jenkins AB, Eisman JA, Howard GM, Kelly PJ, Campbell LV (1999) Clustering of insulin resistance, total and central abdominal fat: same genes or same environment? Twin Res 2:218–225CrossRefPubMedGoogle Scholar
  29. Selby JV, Newman B, Quesenberry CP Jr, Fabsitz RR, King MC, Meaney FJ (1989) Evidence of genetic influence on central body fat in middle-aged twins. Hum Biol 61:179–194PubMedGoogle Scholar
  30. Shirali M et al (2016) Regional heritability mapping method helps explain missing heritability of blood lipid traits in isolated populations. Heredity (Edinb) 116:333–338.  https://doi.org/10.1038/hdy.2015.107 CrossRefGoogle Scholar
  31. Song Y, Lee K, Sung J, Lee D, Lee MK, Lee JY (2012) Genetic and environmental relationships between Framingham Risk Score and adiposity measures in Koreans: the Healthy Twin study. Nutr Metab Cardiovasc Dis 22:503–509.  https://doi.org/10.1016/j.numecd.2010.09.004 CrossRefPubMedGoogle Scholar
  32. Speed D, Hemani G, Johnson MR, Balding DJ (2012) Improved heritability estimation from genome-wide SNPs. Am J Human Genet 91:1011–1021.  https://doi.org/10.1016/j.ajhg.2012.10.010 CrossRefGoogle Scholar
  33. van Dongen J, Willemsen G, Chen WM, de Geus EJ, Boomsma DI (2013) Heritability of metabolic syndrome traits in a large population-based sample. J Lipid Res 54:2914–2923.  https://doi.org/10.1194/jlr.P041673 CrossRefPubMedPubMedCentralGoogle Scholar
  34. van Rijn MJ et al (2007) Heritability of blood pressure traits and the genetic contribution to blood pressure variance explained by four blood-pressure-related genes. J Hypertens 25:565–570.  https://doi.org/10.1097/HJH.0b013e32801449fb CrossRefPubMedGoogle Scholar
  35. Vattikuti S, Guo J, Chow CC (2012) Heritability and genetic correlations explained by common SNPs for metabolic syndrome traits. PLoS Genet 8:e1002637.  https://doi.org/10.1371/journal.pgen.1002637 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Vinkhuyzen AA, Wray NR, Yang J, Goddard ME, Visscher PM (2013) Estimation and partition of heritability in human populations using whole-genome analysis methods. Annu Rev Genet 47:75–95.  https://doi.org/10.1146/annurev-genet-111212-133258 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Voruganti VS et al (2008) Genetics of variation in HOMA-IR and cardiovascular risk factors in Mexican-Americans. J Mol Med (Berl) 86:303–311.  https://doi.org/10.1007/s00109-007-0273-3 CrossRefGoogle Scholar
  38. Whitfield JB (2014) Genetic insights into cardiometabolic risk factors. Clin Biochem Rev 35:15–36PubMedPubMedCentralGoogle Scholar
  39. Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88:76–82.  https://doi.org/10.1016/j.ajhg.2010.11.011 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Zaitlen N, Kraft P, Patterson N, Pasaniuc B, Bhatia G, Pollack S, Price AL (2013) Using extended genealogy to estimate components of heritability for 23 quantitative and dichotomous traits. PLoS Genet 9:e1003520CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Gemma Cadby
    • 1
  • Phillip E. Melton
    • 1
    • 2
  • Nina S. McCarthy
    • 1
  • Marcio Almeida
    • 3
  • Sarah Williams-Blangero
    • 3
  • Joanne E. Curran
    • 3
  • John L. VandeBerg
    • 3
  • Jennie Hui
    • 4
    • 5
    • 10
  • John Beilby
    • 4
    • 5
  • A. W. Musk
    • 4
    • 6
    • 8
  • Alan L. James
    • 4
    • 7
    • 8
  • Joseph Hung
    • 8
    • 9
  • John Blangero
    • 3
  • Eric K. Moses
    • 1
    • 2
  1. 1.Centre for Genetic Origins of Health and Disease, Faculty of Health and Medical SciencesThe University of Western AustraliaPerthAustralia
  2. 2.Faculty of Health SciencesCurtin UniversityPerthAustralia
  3. 3.South Texas Diabetes and Obesity InstituteThe University of Texas Rio Grande Valley School of MedicineBrownsvilleUSA
  4. 4.Busselton Population Medical Research Institute Inc.PerthAustralia
  5. 5.PathWest Laboratory MedicinePerthAustralia
  6. 6.Department of Respiratory MedicineSir Charles Gairdner HospitalPerthAustralia
  7. 7.Department of Pulmonary Physiology and Sleep MedicineSir Charles Gairdner HospitalPerthAustralia
  8. 8.School of MedicineThe University of Western AustraliaPerthAustralia
  9. 9.Department of Cardiovascular MedicineSir Charles Gairdner HospitalPerthAustralia
  10. 10.School of Population and Global HealthThe University of Western AustraliaPerthAustralia

Personalised recommendations